Искатели необычайных автографов — страница 61 из 62

— Скажи́те! — удивляется Фило. — А ведь с чего все началось? Всего-то с игры в кости.

— Ничего странного, мсье, — подает голос черт. — Не спорю: азартные игры — это, конечно, бяка. А все же им удалось сыграть и положительную роль в истории человечества. Мсье Паскаль даже полагал, что в этой случайности есть своя закономерность. По его мнению, человеческая изобретательность ярче всего проявляется именно в играх… И все-таки вы, надеюсь, не думаете, что теория вероятностей в наши дни осталась той же что в семнадцатом веке?

Фило обидчиво фыркает. Не такой уж он олух! После всего сказанного…

— Вот именно. — Мате примирительно дотрагивается до руки, теребящей скатерть. — После всего сказанного совершенно ясно, что со временем в теории вероятностей произошли значительные перемены. И если поначалу задачи ее ограничивались вычислением вероятностей отдельных событий, то уже в восемнадцатом и девятнадцатом веках, с ростом промышленности и экспериментальной науки, сама жизнь поставила теорию вероятностей на службу новым, более сложным проблемам. Различные формы страхования, ошибки, связанные с научными наблюдениями и опытами, — все это заставило ее обратиться к исследованию так называемых случайных величин. Элементы этого понятия встречаются уже в трактате Гюйгенса «Об азартных играх». Потом им занимались многие европейские ученые: Даниил Берну́лли, Пуассо́н, Муа́вр, Лапла́с, Лежа́ндр, Га́усс. И все же наиболее четкую формулировку понятие случайной величины обрело в трудах советского академика Колмогорова.

— Знай наших! — подмигивает Фило. — Приятно услышать имя соотечественника в списке тех, кто совершенствует науку…

— Могу вас обрадовать, — говорит Мате. — В истории науки о вероятностях таких имен много. В первую очередь это Пафнутий Львович Чебышёв — крупнейший русский математик XIX века. Именно он вывел русскую теорию вероятностей на главное место в мире, окончательно преобразовав ее в строго математическую дисциплину. Дело Чебышёва достойно продолжили его ученики Ляпунов и Марков. Далее эстафету подхватили талантливые советские ученые: Слуцкий, Бернштейн, Хинчин, упомянутый уже Колмогоров, а также их ученики, разработавшие вновь возникшие разделы теории вероятностей. Такие, как функции распределения. Или же вероятность случайных процессов, тесно связанных с биологией, астрономией, физикой, инженерным делом… Впрочем, не сомневаюсь, что теория вероятностей будет постоянно пополняться новыми понятиями. Ведь она неотделима от жизни, а жизнь никогда не кончается.

— Совершенно с вами согласен, мсье! — многозначительно намекает бес. — А посему не пора ли нам закрыть официальную часть и перейти к художественной?

— Что вы имеете в виду? — опасливо интересуется Фило.

— Ничего особенного, мсье. Разве что решение одной-двух задач по комбинаторике. Но для этого я, с вашего разрешения, должен отлучиться. О, ненадолго! Всего лишь чтобы слетать в Версаль семнадцатого века.


Художественная часть


Филоматики удручены. Ну теперь ищи ветра в поле! Но, вопреки их мрачным предположениям, бес отсутствует не более минуты. И вот он уже снова здесь и достает из-под плаща непрозрачную, странно раздутую хлорвиниловую авоську, которая сразу же вызывает острый интерес Пенелопы и Клеопатры. Они жадно урчат и даже становятся на задние лапы, пытаясь заглянуть в сумку. Но бес высоко держит свое таинственное сокровище и не опускает до тех пор, покуда кошек не выдворяют в прихожую.

— Что там, Асмодей?

— Задача, мсье! Я ее выудил из того фонтана, подле которого мы отдыхали. Вы, конечно, помните, какие там были красивые рыбки, но вряд ли заметили, что их было четырнадцать, в том числе две золотые. Из этих четырнадцати я зачерпнул восемь. Вам остается решить, какова вероятность, что две золотые окажутся среди этих восьми.

Фило вопросительно смотрит на товарища. Тот, почесывая переносицу, говорит, что прежде всего следует установить число всех возможных комбинаций, затем — число благоприятных и, наконец, разделив второе на первое, получить искомую вероятность.

— Что касается общего числа комбинаций, то это и я могу, — говорит Фило. — Надо вычислить число сочетаний из четырнадцати рыбок по восьми. А это… Мате, где ваш блокнот? Это можно записать так: С148 равно…

— Постойте, — не соглашается Мате, — зачем вычислять из 14 по 8? Воспользуемся известной формулой, где Спm = Спn—m, то есть С148 = С146.

— Правильно! Но вот вопрос: каким образом это С из четырнадцати по шести вычислить?

— Да так, как это делал Ферма, когда вычислял число сочетаний из восьми по три. Вспомните: он выписывал первые восемь натуральных чисел и отделял в этом ряду слева и справа по три числа — 1, 2, 3 и 8, 7, 6. Затем он составлял дробь, где в числителе стоит произведение правой тройки чисел, а в знаменателе — левой…

— Не продолжайте, — перебивает Фило, — я уже понял. Выписываем натуральный ряд чисел от 1 по 14, отделяем шесть чисел слева и столько же справа и составляем дробь:

(14 × 13 × 12 × 11 × 10 × 9)/(1 × 2 × 3 × 4 × 5 × 6), что после сокращения дает 77 × 39.

Итак, С148 = С146 = 77 × 39. Да, но как мы вычислим число благоприятных случаев?

— Думайте сами.

— Не будьте столь непреклонны, мсье, — заступается бес. — Не можем же мы отказать в помощи младенцу, делающему первые шаги в научной комбинаторике. Так вот, мсье Фило, если две золотые рыбки уже выловлены, то из двенадцати оставшихся надо к ним добавить шесть любых. Иначе говоря, вычислить число сочетаний из двенадцати по шести, что равно вот чему:



— Благодарю, благодарю и в третий раз благодарю! — рассыпается Фило. — Теперь я и в самом деле справлюсь один. Делим число благоприятных комбинаций на число всех возможных: C126 на С148, и искомая вероятность у нас в кармане:



— Как, так мало? — Фило явно разочарован. — Стало быть, в вашей сумке, Асмодей, нет ни одной золотой рыбки?

— Но-но-но, мсье! Не забывайте, с кем имеете дело. Тридцать три процента для черта — вероятность громадная.

Он щелкает пальцами. На столе появляется наполненный водой аквариум, и спустя секунду в нем уже плавают восемь прехорошеньких рыбок. Две золотые пламенеют среди них, как сорвавшиеся с неба и всё еще не остывшие звездочки. Мате рассматривает их с удовольствием. Уж этот Асмодей! Где ему обойтись без фокусов…

— По-моему, он работает не хуже Акопяна, — восторгается Фило.

Бес дурашливо раскланивается.

— Мсье, вы мне льстите! Однако программа наша не окончена. Оркестр, туш! Ваш выход, мсье Мате. Да, да, не смотрите на меня удивленными глазами. Надо же мне познакомиться с вашими собственными числовыми изысканиями.

— Полно, — смущается тот. — После Паскаля и Ньютона…

— Не боги горшки обжигают, мсье, — подбадривает черт. — Думаете, я не знаю, что один из ваших арифметических треугольников пригодился для решения некоего дифференциального уравнения, а другой — для расчета авиационного вала?

— Дела давно минувших дней. Знали бы вы, что я придумал месяц назад! Однажды я заинтересовался изосумма́рными числами…

— Чем-чем? — переспрашивает Фило.

Оказывается, Мате изобрел это название сам. Приставка «изо» означает «равные». Следственно, изосуммарны те числа, у которых сумма цифр одинакова. Вот, например: 6, 15, 24, 33, 105, 204, 600. Сумма цифр у каждого из этих чисел равна 6.

Для краткости Мате назвал сумму цифр индексом. И вот ему захотелось узнать, сколько имеется изосуммарных чисел с разными индексами, то есть равными единице, двойке, тройке и так далее.

Сперва он стал их разыскивать среди однозначных чисел, затем среди двузначных, трехзначных, четырехзначных… А из найденных построил таблицу. Без таблицы, сами понимаете, в таком деле не обойтись.

— Перед вами таблица распределения изосуммарных чисел, — продолжает Мате, раскрывая блокнот. — Здесь буква «k» — значность чисел. Она у меня помещается в левом столбце. Буква «i» — индекс числа. Индексы я отложил на верхней горизонтали. Как видите, индекс не превышает девяти, в то время как значность может быть любая.



— А почему индекс, то есть сумма цифр, тоже не может возрастать до бесконечности? — сейчас же прилипает Фило.

— Всё в свое время! Итак, вы видите, что количество изосуммарных чисел с индексом 1 всегда равно единице для любой значности…

— Стойте, — перебивает Фило. — Ваша таблица — это же числа треугольника Паскаля!

— Молодец, что заметили. У меня и в самом деле получился треугольник Паскаля, хотя и в форме прямоугольника, то есть в том виде, как его изображал Тарталья.

— Значит, — размышляет Фило, — по этой таблице можно заранее узнать, сколько существует, скажем, четырехзначных чисел, сумма цифр которых равна, допустим, пяти.

— Конечно. Надо только найти в ней число, стоящее в четвертой строке и в пятом столбце. Это — 35. Само собой, число это всегда можно выразить через формулу сочетаний.

— Каким образом?

— Подумайте сами. А я хочу сказать о другом. Если вы помните особенности Паскалева треугольника, то легко ответите на такой вопрос: как, НЕ ВЫСЧИТЫВАЯ, сразу, определить по таблице, сколько всего изосуммарных чисел с каким-либо индексом (разумеется, не превышающим девяти) есть среди чисел всех значностей, начиная с однозначных и кончая любой заданной?

С ответом, однако, никто не торопится, и потому Мате отвечает сам. Оказывается, вопрос несложный. Вот, например, мы хотим узнать количество изосуммарных чисел с индексом 5, начиная с единицы по семизначные числа. Для этого, казалось бы, следует сложить все числа пятого столбца, начиная с 1 по число 210, которое стоит в седьмой строке. Но обнаруживается, что узнать это число можно и не прибегая к сложению, ибо сумма этих чисел находится в соседнем, шестом столбце, всё в той же седьмой строке. Это 462. Вот сколько изосуммарных чисел с индексом 5 есть среди всех чисел от единицы до десяти миллионов.