– Понимаю, – Корелл кивнул.
Он и в самом деле готов был поверить в это. Хотя, вполне возможно, его уверенность по большей части объяснялась количеством выпитого пива.
– Гёдель развеял грезы Гилберта, – продолжал Краузе. – Он сорвал пелену с наших глаз. Доказал, что ни математика, ни логика не избавят нас от власти иррационального. Каким бы совершенным ни казался мир, нам не уйти от противоречий. Можно сказать, противоречия – это сама жизнь.
– Как говорил мой отец, человек без противоречий не заслуживает доверия.
– Твой отец был мудрец.
– Не во всем.
– Не во всем?.. Здесь он, по крайней мере, прав. Противоречие – нерв искусства. Почему китчевые подделки так ужасны? Они слишком однозначны, а значит, карикатурны. Но если для Гилберта теорема Гёделя знаменовала крах всех надежд и упований, для Алана она стала чем-то вроде девиза. Основы математики поколеблены – тем увлекательнее ступить на шаткую почву. Время переворотов было самое подходящее, в этом смысле Тьюрингу повезло. Эйнштейн подкорректировал ньютоновскую картину мира. Нильс Бор и компания открыла кванты. А потом повились Гейзенберг и принцип неопределенности, и выяснилось, что рассчитать траекторию движения элементарной частицы – все равно что пытаться предсказать, куда в следующий момент качнет пьяного в стельку. Вселенная стала непредсказуемой, и таковой она больше нравилась Алану. Неопределенность была для него что воздух. В Королевском колледже он только и говорил что о Гёделе. Гёдель то, Гёдель сё… И Гёдель, конечно, был героем, но… Он ответил не на все вопросы Гилберта. Оставалось решить, что там с определенностью.
Краузе вздохнул и глотнул пива.
– Ведь Гилберт, – продолжал он, – призвал лучшие умы эпохи сформулировать метод, который позволял бы определить в отношении любой математической проблемы, разрешима ли она. Многие пытались реабилитировать таким образом математику. Проблема разрешимости – так ее назвали. Или, если по-немецки, – Entscheidungsproblem. Макс Ньюман[41] – тот самый Ньюман, что сейчас работает над цифровыми машинами в Манчестере, – прочел на эту тему курс лекций. Думаю, тем самым он хотел сподвигнуть хоть кого-нибудь взяться за эту задачу. Без особой надежды на успех, впрочем. Проблема разрешимости представлялась неразрешимой. Попробуй-ка сформулируй такой метод, годный для любого математического высказывания за всю историю науки! Задача представлялась слишком монументальной. Это все равно что мечтать о вечном двигателе. Но Ньюман… В ходе рассуждений он как-то обмолвился, что, возможно, проблема решится чисто механически.
– Механически? – переспросил Корелл.
– Он выразился фигурально, в переносном смысле. Механически – то есть самоочевидным, формальным способом. Но среди слушателей оказался один молодой человек, который имел обыкновение любое высказывание трактовать буквально.
– Тьюринг, – догадался Леонард.
Краузе кивнул.
– Алан всегда стремился следовать буквальной трактовке любого высказывания. Так, когда ему однажды заметили, что в паспорте не хватает его подписи, Алан ответил следующее: «Но мне сказали, что в нем ничего нельзя писать». Подобную упертость многие понимали как отсутствие фантазии. Но в действительности дело обстояло с точностью до наоборот. Понимая слова в их прямом значении, Алан нередко оказывался на шаг впереди остальных. Так оно получилось и на этот раз.
Краузе замолчал. Корелл перегнулся через стол:
– Ну, рассказывай же…
Глава 20
Рассказ стопорился, и не только по причине усложнения материала. Оба они – и слушатель, и рассказчик – успели порядком опьянеть. Но Корелл уловил, что Тьюринг был молод, когда услышал слово «механически» не в том контексте, который был предусмотрен его изначальным значением. Судя по всему, Алану было двадцать с небольшим. Как и Гёделю, как и большинству математиков, когда им удается выдумать нечто новое и великое. Но, в отличие от большинства своих коллег, Тьюринг почти не интересовался историей своей науки и совершенно не был настроен учиться на чужих ошибках.
Вот уже много раз, особенно в детском возрасте, он решал классические математические задачи, уже решенные до него другими, иногда сотни лет назад. Алан не имел потребности обсуждать с кем-либо свои идеи и предпочитал идти собственным путем. Он был полон сил, уверен в себе и смотрел на мир собственными глазами.
– Вообще-то, слово «механический» никогда не имело в Кембридже тоскливого привкуса. Даже после крушения вселенной Ньютона, оставаясь памятником старого, доэйнштейновского порядка. Но для Алана Тьюринга оно было сама поэзия… Алана оценили в Кембридже, и это было ему в новинку, – продолжал Краузе. – Ведь в школе он был никто… А в «Королевском» ему положили три сотни фунтов в год, предоставили отдельную комнату и возможность обедать в обществе самых видных академиков. Но главное – Тьюринг получил достаточно свободы, чтобы заниматься тем, чем хочет.
– Что же это было?
– Ну… для начала он хотел попробовать себя в квантовой физике. Интересовала его и теория вероятностей. Но он так ничего и не сделал ни там, ни там, потому что не мог избавиться от того, что говорил Макс Ньюман.
– То есть от идеи найти механический метод…
– При помощи которого можно было бы определить, решаема ли та или иная математическая проблема.
– Звучит впечатляюще.
– Это бессмысленно. Математических истин, которые нельзя ни опровергнуть, ни доказать, пруд пруди. Взять хотя бы третью теорему Ферма. Или положение Гольбаха о том, что всякое четное число является суммой простых чисел. Как может бездушный механизм справиться с задачей, о которую сломали зубы лучшие математические умы человечества? Научный мир буквально покатывался со смеху. Харди[42] – небожитель Харди! – писал, что такое может взбрести в голову разве что конченому идиоту. Математик, решающий задачи при помощи чудо-машины! Да нынешняя математика полна неразрешимых противоречий. Это мечта, чудесный сон…
– Тем не менее Тьюринг мечтал, – перебил собеседника Корелл.
– Мечтал, – согласился тот. – Потому что не был математиком в полном смысле слова. Он стоял в стороне от всего этого и мог позволить себе думать не так категорично, как Харди. Он не утратил наивности, а она, в сочетании с гениальностью, – гремучая смесь.
– Но почему машины? – недоумевал Корелл.
– Бог их знает… – Фредрик Краузе вздохнул. – История любой научной идеи – тайна, покрытая мраком. Почему нам в голову западают те или иные слова или фразы? Я говорил, что слово «механический» для Алана было исполнено настоящей поэзии. Думаю, все началось с одной книжки, которую ему подарили в детстве, – популярная детская энциклопедия, автор которой на пальцах объяснял юным читателям устройство мира и человеческого организма. Он сравнил человеческое тело со сложным механизмом – метафора, призванная показать слаженность работы наших органов. Но Алан воспринял ее буквально – или почти буквально. Мозг как машина – эта идея не могла ему не понравиться. Она была конкретна и доказуема – в отличие от бесполезных спекуляций на тему души.
– Но он говорил об электронном мозге, – напомнил Корелл.
– Позже – да. Но в тридцатые годы Алан не имел дела ни с электрикой, ни с электроникой. Разве в теоретическом плане. Возможно, он знал уже тогда, что мозг приводится в действие электрическими импульсами. Но они всего лишь передают сигналы от одного места к другому. Они примитивны и однодумны, – в том смысле, что всегда следуют по одним и тем же маршрутам. Разве их было бы достаточно, чтобы написать «Гамлета» или «Аппассионату»… или, к примеру, разработать теорию относительности? Но Алан рано понял, что в основе этой сложной системы лежат всего два режима, две логические константы. Он умел разглядеть в сложном простое.
– Боюсь, я не совсем понимаю, – смутился Леонард.
– В сущности, здесь нет ничего сложного, – ответил Краузе. – Еще Платон в «Софисте» заметил, что для общения нам было бы достаточно двух слов – «да» и «нет». Ты когда-нибудь играл в «двадцать вопросов»?
– Вроде да.
– Тогда ты представляешь себе, как много можно сообщить и опровергнуть, задавая вопросы, на которые можно ответить либо «да», либо «нет».
– Ну да… – задумчиво протянул Корелл.
– А теперь представь себе, что темп игры ускоряется, а вопросы и ответы выстраиваются в длинные логические цепочки… Представляешь?
– Представляю.
Леонард был не на шутку впечатлен, но не подавал виду.
– Собственно, эта мысль не нова, – продолжал Краузе. – Идея разбить процесс мышления на элементарные «кирпичики» появилась не одно столетие тому назад. В семнадцатом веке об этом думал Лейбниц. Но никому до Алана даже в самых дерзких мечтах не приходило сконструировать машину, которая охватывала бы все возможные математические высказывания; не только те, что есть, но и те, что появятся в будущем. Думаю, Алан рано понял основополагающие принципы работы такого механизма – способность читать в разных режимах и наличие памяти, то есть способности складировать информацию. Не могу сказать, какой именно представлялась Алану эта машина. Он ни с кем ее не обсуждал. Но в период увлеченности ею походил на сумасшедшего… Вообще, Алан был не очень хорошим бегуном, но отличался упорством и выносливостью. Иногда добегал до самой реки, то есть до Или. В один из дней начала лета тридцать пятого года он из конца в конец пробежал один луг в Гранчестере… Ты не увлекаешься ничем подобным? Нет? Но тебе наверняка известно, как струится по жилам кровь, когда сбавляешь темп после моциона на пределе сил. Иногда мне кажется, что таким образом можно перебороть любую напасть, будь то страх или переутомление… Тебе ведь знакомо это состояние абсолютной ясности, будто после ледяной ванны? Сразу все становится на свои места. Все приходит в порядок, как по мановению волшебной палочки. Что уж говорить об Ал