§ 11. Основные гарантии, которые должны быть подтверждены в гражданском, коммерческом и административном судопроизводствах
Предоставление инструментов ИИ для разрешения споров в режиме онлайн не должно влиять на право беспрепятственного доступа к суду и равной состязательности в судебных процессах. Например, в гражданских делах каждый истец имеет право передавать в суд любой спор, касающийся его гражданских прав и обязанностей.
В 2015 г. парламентская Ассамблея Совета Европы приняла резолюцию «Доступ к правосудию через интернет: потенциал и проблемы». Согласно этой резолюции любой участник судебного процесса в том случае, если используются элементы ИИ, должен иметь полный доступ к большим данным, которые обрабатываются ИИ, а также алгоритмам, на основании которых принимается решение. При этом создатели судебного ИИ обязаны разъяснить суть алгоритма любому участнику судебного процесса.
По факту это означает, что значительная часть наиболее эффективных систем ИИ, занимающаяся прогнозированием или распознаванием сложных сущностей, не может быть применена в судебной сфере европейских стран. Проблема состоит в том, что эффективность ИИ напрямую связана со сложностью нейронных сетей, которые, как правило, занимаются распознаванием. Поскольку нейронные сети постоянно проходят машинное обучение, то зачастую разработчики алгоритма просто не знают промежуточные алгоритмы, влияющие на конечный вывод. Эти алгоритмы формируются в процессе обучения и постоянно меняются.
Сегодня в целом ряде видов деятельности складывается парадоксальная ситуация, когда наиболее эффективные программы с точки зрения распознавания и принятия решений делают это недоступным для понимания людьми без глубокого математического образования образом. Поскольку объяснить алгоритмы без использования сложных разделом математики невозможно, то в соответствии с резолюцией Европейской Комиссии, любой участник процесса может заблокировать применение наиболее эффективных методов ИИ в этом процессе из-за их необъяснимости.
Поскольку, как показывает пример Соединенных Штатов, и отчасти Великобритании, использование ИИ в судопроизводстве, в конечном счете, неотвратимо, поскольку любая имеющаяся технология рано или поздно используется, необходимо законодательно решить главную проблему.
Главная проблема использования ИИ в судопроизводстве состоит в подрыве равенства сторон в пользу государственных учреждений, компаний со значительными средствами, людей, имеющих образовательные и профессиональные навыки в сфере высоких технологий. При этом использование ИИ делает судебную систему еще более непонятной, а потому враждебной для значительных групп населения, которые не обладают необходимыми знаниями или средствами для найма консультантов. Поскольку для большинства европейских стран реальный горизонт внедрения ИИ в судебную и правоохранительную сферы составляет от пяти до десяти лет, важно использовать эти годы для создания равных возможностей использования ИИ в судопроизводстве для всех участников судебного процесса. Как это сделать сегодня не вполне ясно. Однако, как показывает практика, сама постановка проблемы и привлечение к ней внимания повышает, в конечном счете, шансы на ее решение.
Использование прогнозной аналитики порождает и еще одну проблему. Об этом свидетельствует опыт Соединенных Штатов. В Америке часты случаи, когда юридические фирмы, осуществив прогноз по тому или иному делу, отказываются иметь дела с истцами или ответчиками, у которых малы шансы на успех. Тем самым люди, нуждающиеся в юридической консультации, в конечном счете, лишаются ее. Это подрывает основы судопроизводства.
Вероятно, внедрение ИИ потребует не только изменения норм, регулирующих судебные дела, но и принятия нового кодекса профессиональной этики для адвокатов.
§ 12. Вопросы, характерные для уголовного правосудия: предупреждение правонарушений, риск рецидива и оценка уровня опасности
Использование ИИ в уголовном судопроизводстве создает риск возрождения детерминированных доктрин в ущерб доктринам индивидуализации санкций, которые получили широкое распространение в большинстве европейских стран, начиная с 1945 г. Использование ИИ в уголовных делах ставит особо острые проблемы. Они связаны с возможностью предсказывать правонарушения. В течение 30 лет во многих европейских странах шли дискуссии на этот счет. Итогом дискуссий стали конкретные законодательные нормы.
Например, в Италии п.2 ст. 220 Уголовно-процессуального кодекса прямо запрещает использование привычных или профессиональных признаков, а также анализ психологических черт, как меток предрасположенности человека к преступлению. Во Франции доктрина «Новая социальная защита» предусматривает введение системы социальной реабилитации, предотвращающей преступления за счет ликвидации условий для его совершения, связанных прежде всего с неблагоприятными условиями жизни, отсутствием доступа к образованию, плохих условий занятости и т. п.
Этот подход заложен во французском, бельгийском и испанском законодательствах.
Иными словами, официальная позиция большинства судебных органов европейских стран, нашедшая отражение, в том числе в формах, регулирующих судопроизводство, состоит в отказе от концепции предрасположенности к совершению преступления. Таким образом, возникает чрезвычайно серьезное противоречие между сложившейся в европейском судопроизводстве традицией отказа от учета предрасположенности в совершении преступления на основе анализа психологических, социальных, медицинских, профессиональных и иных факторов, и базовой технологии ИИ – нейросетями и машинным обучением.
Суть этой технологии как раз состоит в том, чтобы первоначально сгруппировать все данные по максимальному числу факторов, влияющих на ту или иную функцию, например, совершения преступления, а затем рассчитать уровень влияния каждого фактора и их комбинации на конечную функцию, т. е. вероятность совершения преступления.
По своей глубинной сути, нейронные сети – это программы максимально глубокого комбинаторного анализа на взаимосвязь различных факторов и осуществления прогноза на этой основе. Программа сама по себе находится по другую сторону добра и зла, этичного или неэтичного, корректного или некорректного. Не существует этичных или неэтичных программ. Есть программы, позволяющие реализовать адекватные реальности модели, а есть – неадекватные, не соответствующие фактическому положению дел.
В настоящее время в странах ЕС с большой долей национальных меньшинств, особенно Франции, Бельгии, Германии, Дании и Швеции активистские и общественные организации пытаются заблокировать использование предиктивных моделей в полицейских расследованиях и судебной аналитике. В ходе дискуссий в интернете и социальных медиа активисты высказываются в том плане, что нейронные сети неизбежно покажут большую вероятность совершения преступления у бедных, молодых, без достаточного образования представителей меньшинств. Они не оспаривают, что ИИ точно посчитает факторы. Их аргумент состоит в том, что коренные жители Европы виновны перед меньшинствами за колониальный период и поэтому полицейские и судьи не могут подходить с одной меркой к коренному населению и недавним мигрантам. Мерки должны быть разными. Более мягкие – для мигрантов, перед которыми якобы виноваты коренные европейцы. Именно в этом состоит сегодня главный предмет дискуссии относительно использования ИИ, прежде всего, в полиции, а также в судебной системе.
Обработка больших данных по преступности методами ИИ и, прежде всего, глубоких нейронных сетей с машинным обучением предоставляет обществу реальную картину факторов, влияющих на совершение конкретных преступлений, причем в каждом конкретном месте. Обвинять программы в неполиткорректности – глупость. Более того, глупость – не учитывать программные результаты, а тем более прогнозы в правоохранительной деятельности и судебной сфере.
При этом эксперты ЕС полагают, что нормативный запрет на анализ причин преступности, реализованный в настоящее время в европейской судебной системе, не сокращает, а увеличивает уровень преступности. В большинстве европейских стран существуют многоступенчатые запреты на предиктивную и профилактическую деятельность полиции. Эти запреты подталкивают полицию не предупреждать, а быстро раскрывать уже совершенные преступления. Между тем, в условиях широкого использования преступниками вредоносного софта, генных инструментов преступности и т. п. такой подход оказывается слишком опасным для общества. Единственно возможным становится превентивный подход, базирующийся не на раскрытии преступления, а на его предупреждении.
Сегодня законодательства подавляющего большинства европейских стран ориентировано на запаздывающее, а не на опережающее реагирование на преступление. Вполне вероятно, что именно тема превентивной борьбы с преступностью станет в ближайшие годы основной темой общественных дискуссий в сфере законодательства. Без перехода от парадигмы наказания преступников к парадигме предупреждения преступлений предиктивный полицейский софт применить невозможно. А если ограничить полицию в использовании предиктивного софта, то она неизбежно будет проигрывать преступникам, которые такой софт уже используют в поисках наиболее прибыльных и наименее рисковых направлений, сфер и мест деятельности.
§ 13. Инструменты, используемые следственными органами на стадии расследования
Инструменты, получившие название «предиктивного полицейского софта» уже широко используются в Соединенных Штатах, Канаде, Китае, Великобритании, Японии, Нидерландах и отчасти Франции. Эти системы базируются на аккумулировании данных из всех источников, всех форматов и позволяют выявлять неочевидные связи и прогнозировать действия. Наиболее известный программный комплекс такого типа, это – Palantir в Соединенных Штатах.
В целом, в европейской полиции большая часть компьютерных инструментов используется не для предотвращения преступных действий, а для эффективного судебного преследования преступников. Предиктивная аналитика в настоящее время находится на вооружении в ФБР, в полицейских управлениях большинства городов США, Великобритании, в Гонконге, Сингапуре и Китае. Как показывает практика, наиболее успешные полицейские прогнозы системы дают в отношении краж со взломом, уличного насилия, угона транспортных средства, уличной торговли наркотиками – по направлению низкоуровневой преступности, а также финансовых преступлений и мошенничеств, криминального оборота наркотиков и торговли животными и птицами – в высокоуровневой преступности.