Искусственный интеллект – надежды и опасения — страница 43 из 60

Мы можем выстраивать функцию передачи ответственности в разнообразии условий. В компаниях, например, можно использовать цифровые именные бейджи, которые покажут, кто и с кем связан, благодаря чему удастся сопоставить схему связей с результатами компании в ежедневной или еженедельной перспективе. Функция передачи ответственности побуждает узнавать, помогают ли выявленные связи справляться с проблемами, изобретать новые решения, и усиливает полезные связи. Когда эту обратную связь получается выразить количественно – что непросто, поскольку очень и очень многое количественно не измерить, – тогда производительность и скорость внедрения инноваций в организации значительно улучшаются. Такова, скажем, основа метода «непрерывного совершенствования» в корпорации «Тойота»[152].

Следующий шаг заключается в попытках проделать то же самое с увеличением масштаба и создать, как я это называю, доверительную сеть данных. Ее можно рассматривать как распределенную систему, подобную интернету, но со способностью количественного измерения и оценки качества человеческого общества (та же перепись в США довольно подробно рассказывает о численности населения и ожидаемой продолжительности жизни). Опытные образцы доверительных сетей тестируются сегодня сразу в нескольких странах, и за основу взяты данные и методы, изложенные в программе устойчивого развития ООН.

На горизонте маячит ви́дение того, как мы можем сделать человечество более разумным, создав человеческий ИИ. Это ви́дение формируется двумя картинами. Первая образована данными, которым все доверяют, – это данные, проверенные широким сообществом, данные, алгоритмы комбинирования которых известны и отслеживаются, во многом подобные данным переписи (ведь на последние мы полагаемся автоматически, признавая за ними хотя бы приближенную достоверность). Вторая картина образуется посредством объективной оценки общественных норм, политики и деятельности правительства на основе достоверных данных о текущей ситуации. Эта вторая картина зависит от доступности доверенных данных и потому едва начала проявляться. Надежные данные и оценка норм, политик и деятельности правительства на основе данных вместе порождают функцию передачи ответственности, которая повышает приспосабливаемость и интеллект общества в целом.

Именно в момент возникновения такого общественного интеллекта оказываются досадной помехой «поддельные новости», пропаганда и реклама. К счастью, доверительные сети позволяют надеяться на построение общества, более устойчивого к социальному «эху», к этим вывертам человеческого общежития и упражнениям в безумии. Мы начали разрабатывать новый способ проведения социальных измерений, рассчитывая избавиться от ряда заболеваний, свойственных современному обществу. Мы используем открытые данные из всех источников, тем самым поощряя честное описание человеческих предпочтений в рамках курируемой математической структуры, которая поможет подавить «эхо» и воспрепятствовать дальнейшим попыткам манипулирования.

О поляризации и неравенстве

Экстремальная поляризация и сегрегация по доходам сегодня распространились практически повсеместно и угрожают отчуждением правительств от гражданского общества. Средства массовой информации все чаще впрыскивают, так сказать, адреналин в погоне за отдачей от рекламы и утрачивают способность беспристрастно излагать факты и аргументированно их обсуждать, а очевидная деградация масс-медиа побуждает людей терять ориентиры. Мы больше не знаем, чему верить, и потому нами легко манипулировать. Налицо реальная потребность обосновать наши разнообразные культуры надежными, основанными на данных стандартами, с которыми мы все согласны, и умение выяснять, какие методы поведения и какие политики эффективны, а какие – нет.

При переходе к цифровому обществу обесцениваются традиционные представления об истине и справедливости. Ранее считалось, что справедливость преимущественно неформальна и нормативна. Мы ее благополучно формализовали – и одновременно сделали недоступной для большинства людей. Наши правовые системы подводят нас, как и раньше, именно потому, что ныне они более формальные, более цифровые и менее встроенные в общество.

Представления о справедливости сильно разнятся по всему миру. В частности, ключевое отличие таково: можете ли вы или ваши родители вспомнить, как пришли плохие ребята с оружием в руках и забрали все, что у вас было? Если да, значит, ваше отношение к справедливости отличается от отношения «типичного» читателя этого очерка. Вы принадлежите к социальной верхушке? Или к тем, кто видит канализацию изнутри? Взгляд на справедливость крайне зависит от личной истории.

Я составил общий тест для граждан США, которых спрашиваю, знаком ли им какой-нибудь владелец пикапа? Это самая продаваемая модель автомобиля в Соединенных Штатах Америки, и если вы не знакомы хотя бы с одним владельцем такой машины, то у вас нет связей минимум с 50 процентами американцев. Физическая сегрегация влечет за собой концептуальную. Бо́льшая часть населения Америки воспринимают справедливость, равный доступ и честность совершенно иначе, нежели, скажем, типичный обитатель Манхэттена.

Если изучить модели мобильности – маршруты перемещений – в типичном городе, выяснится, что люди верхнего квинтиля (семьи белых воротничков) и нижнего квинтиля (безработные или получающие социальное пособие) почти никогда не общаются друг с другом. Они не посещают одни и те же места, не обсуждают одно и то же. Номинально они все живут в одном и том же городе, но это как бы два совершенно разных города – вот, пожалуй, важнейшая причина сегодняшней «чумы поляризации».

О чрезмерном богатстве

Около двухсот богатейших людей мира пообещали отдать более 50 процентов своего богатства либо еще при жизни, либо после кончины, породив таким решением разноголосицу мнений на свой счет[153]. Самым известным примером является, вероятно, Билл Гейтс, который фактически решил подменить собой правительство. Вам нужны москитные сетки? Пожалуйста. Необходимы противовирусные препараты? Получите. Мы побуждаем заинтересованных участников к учреждению различных фондов, призванных обеспечивать общественное благо, и у каждого из них есть собственное представление о том, что считать общественным благом. Это разнообразие целей породило много удивительных особенностей современного мира. Действия неправительственных организаций, подобных фондам Форда и Слоуна[154], которые берутся за дела, невозможные для остальных, изменили мир к лучшему.

Конечно, эти миллиардеры – люди со всеми присущими человеку недостатками, и далеко не всё сегодня так, как могло и должно было быть. С другой стороны, схожая ситуация наблюдалась сразу после прокладки железных дорог. Некоторые сколотили огромные состояния. Многие обанкротились. Обычные люди получили железные дороги. Это хорошо. То же самое относится к электроэнергии – и к прочим новым или бывшим когда-то новыми технологиям. Процесс «взбалтывания» подбрасывает кого-то вверх, а затем роняет обратно – самого «везунчика» или его наследников. Пузыри чрезмерного богатства возникали в конце 1800-х и начале 1900-х годов, когда внедрялись паровые машины, железные дороги и электрические фонари. Порожденные ими состояния исчезли за два-три поколения.

Будь США такими, как Европа, я бы начал беспокоиться. В Европе те же самые семьи, если присмотреться, владеют богатством на протяжении сотен лет, поэтому они укоренились не только в финансовой, но и в политической системе, а также в иных отношениях. Но Америке до сих пор удавалось не допустить появления такой наследственной классовой системы. Чрезмерное богатство краткосрочно, и это хорошо. Оно не должно задерживаться. Если вы выиграете в лотерею, то получите свой миллиард долларов, но пусть ваши внуки сами зарабатывают на жизнь.

Об ИИ и обществе

Люди боятся ИИ. Возможно, это правильно. Но надо понимать, что ИИ питается данными. Без данных он – ничто. Не стоит тратить время на наблюдения за ИИ; вместо этого следует изучать его «диету» и поступки. Структура доверительной сети, которую мы конструируем с государственной помощью ЕС и других стран, обеспечивает рамки, куда помещаются наши алгоритмы, куда встраивается наш ИИ; но мы должны контролировать ее входы и выходы, чтобы при необходимости спрашивать: это дискриминирующее решение? Это то, чего действительно хотят люди? Или оно выглядит странновато?

Наиболее показательная аналогия заключается в том, что нынешние регуляторы, бюрократия и правительства очень похожи на ИИ: они берут правила, которые мы называем законами и нормативами, используют накопленные государством данные и принимают решения, которые влияют на нашу жизнь. Недостаток нынешней системы заключается в том, что мы очень слабо контролируем эти министерства, органы регулирования и прочую бюрократию. Единственный способ контроля, доступный нам, – это выборы, возможность передать власть кому-то еще. Нужно добиваться более плотного и тщательного контроля. Нужно фиксировать данные, послужившие основой для каждого принятого решения, и анализировать результаты для всех заинтересованных сторон – наподобие того, как изначально предполагалось для выборных легислатур.

При наличии данных на входе и выходе всякого решения мы легко можем узнать, насколько честен алгоритм. Не составит труда выяснить, морален этот ИИ или аморален с нашей точки зрения. Такой подход принято называть «открытым алгоритмом»; вы воочию видите информацию на входе и оцениваете решение, основанное на этой информации. Тем самым появляется возможность понять, поступает ИИ правильно или неправильно. Оказывается, это несложно. Кто контролирует данные, тот контролирует ИИ.

Люди часто забывают упомянуть о том, что все тревоги по поводу ИИ аналогичны опасениям по поводу действий нынешних правительств. Применительно к большей части правительства – речь о системе правосудия и пр. – общество не обладает достоверными сведениями о конкретных действиях в конкретных ситуациях. Как узнать, справедлив суд или нет, если у нас нет входной и исходящей информации? Аналогичная проблема возникает с машинным ИИ, и ее следует трактовать схожим образом. Нужны достоверные данные, чтобы контролировать нынешние правительства в сфере обработки данных и принятий решений, – и машинный ИИ нисколько здесь не отличается.