Искусственный интеллект – надежды и опасения — страница 47 из 60


Все слышали о новых достижениях в области искусственного интеллекта, прежде всего в машинном обучении. Наверняка вам доводилось и внимать утопическим или апокалиптическим прогнозам по поводу этих достижений. Утверждается, что ИИ либо сулит нам бессмертие, либо предвещает конец света, и в пользу той и другой версии сказано и написано очень много. Впрочем, даже самые совершенные нынешние ИИ по-прежнему далеки от того, чтобы справляться с задачами, которые без труда решают четырехлетние дети. Несмотря на свое громкое название, искусственный интеллект в основном опирается на методы выявления статистических закономерностей в больших наборах данных. Люди же способны достичь куда большего.

Почему мы так много знаем о мире вокруг? Мы усваиваем огромное количество информации даже в раннем детстве; уже четырехлетние дети знают о растениях, животных и машинах, о желаниях, убеждениях и эмоциях, в конце концов, о динозаврах и космических кораблях.

Наука изрядно расширила наши знания о мироздании – невообразимо большом и бесконечно малом, – мы добрались до пределов Вселенной и начала времен. Мы используем эти знания, чтобы составлять новые классификации и делать новые прогнозы, воображать новые возможности и привносить новизну в этот мир. Но ведь наше восприятие формируется потоками фотонов, бомбардирующими сетчатку, и колебаниями воздуха, воздействующими на барабанные перепонки. Так каким образом мы узнаем столько полезного о мире вокруг, если способы его познания настолько ограничены? И каким образом связаны с познанием несколько фунтов серой слизи в нашей голове, прямо за глазами?

Наилучший ответ на данный момент состоит в том, что наш мозг выполняет вычисления, обрабатывая конкретные, специфические и неупорядоченные данные от наши органов чувств; именно эти вычисления дают нам относительно точное представление о мире. Репрезентации кажутся структурированными, абстрактными и организованными по иерархическому принципу; они включают в себя восприятие трехмерных объектов, грамматику, лежащую в основе языка, и ментальные способности, скажем, «теорию разума», позволяющие понимать мысли и побуждения других людей. Эти репрезентации дают возможность выдвигать разнообразные прогнозы и воображать различные варианты развития событий уникальным, сугубо человеческим и творческим образом.

Такое познание нельзя назвать единственной разновидностью интеллекта, но оно принципиально важно для людей. Причем такой интеллект характерен для маленьких детей. Пусть дети чрезвычайно плохо планируют и принимают решения, зато они – лучшие ученики («усваиватели знаний») во Вселенной. По большей части процесс превращения данных в теории завершается до нашего пятого дня рождения.

Со времен Аристотеля и Платона известны два основных подхода к выяснению того, как мы приобретаем знания, и эти подходы по-прежнему актуальны – и используются в машинном обучении. Аристотель исходил из убеждения, что действовать нужно снизу вверх: начинаем с ощущений – потока фотонов и колебаний воздуха (или пикселей и образцов звука для цифровых изображений и аудиозаписей) – и пытаемся вывести из них некие шаблоны. Этот подход развивали такие классики ассоциаций (ассоциативисты), как философы Давид Юм и Джон Стюарт Милль, а также психологи-бихевиористы Иван Павлов и Б. Ф. Скиннер[164]. С этой точки зрения абстрактность и иерархическая структура репрезентаций оказываются чем-то наподобие иллюзии, в лучшем случае – эпифеноменом[165]. Все происходит через ассоциации и обнаружение шаблонов, особенно при условии обилия данных.

С течением времени в изучении тайн познания стали наблюдаться метания между подходом «снизу вверх» и его альтернативой, методом «сверху вниз», предложенным Платоном. Возможно, мы извлекаем абстрактные знания из конкретных данных, поскольку нам уже известно многое, в первую очередь потому, что мы уже – от природы и благодаря эволюции – обладаем множеством базовых абстрактных концепций. Подобно ученым, мы можем использовать эти понятия для формулирования гипотез о мире. Затем, не пытаясь выводить шаблоны из необработанных данных, мы можем делать предположения относительно того, каковы должны быть эти данные, если указанные гипотезы верны. Наряду с Платоном такой подход отстаивали «рационалистические» философы и психологи, скажем, Декарт и Ноам Хомский[166].

Вот пример из повседневной жизни, иллюстрирующий разницу между двумя подходами. Возьмем проблему спама. Данные представляют собой длинный несортированный список сообщений в почтовом ящике. Очевидно, что часть этих сообщений содержательны, тогда как остальные суть откровенный спам. Как можно отличить одни от других на основании имеющихся данных?

Рассмотрим сначала подход «снизу вверх». Вы замечаете, что спам-сообщения, как правило, имеют определенные особенности: у них множество адресатов, они приходят будто бы из Нигерии, обещают призы в миллион долларов или рекламируют виагру. Проблема в том, что и содержательные сообщения могут соответствовать этим признакам. Если изучить достаточное количество образцов спама и обыкновенных писем, мы увидим, что дело не только в отдельных признаках, но и в том, что эти признаки, как правило, комбинируются (письмо из Нигерии с посулом миллиона долларов – это спам). Фактически же могут обнаружится некие высокоуровневые корреляции, отличающие спам-сообщения от содержательных – допустим, определенная схема орфографических ошибок или группировка IP-адресов. Выявление таких шаблонов позволяет отфильтровывать спам.

Подход «снизу вверх» в машинном обучении работает именно так. Ученику предлагаются миллионы образцов, каждый с определенным набором признаков и помеченный как спам (или как-то иначе). Компьютер далее может составить общее правило выявления спама, отталкиваясь от сколь угодно малых отличий.

Но что насчет подхода «сверху вниз»? Я получаю электронное письмо от редактора «Журнала клинической биологии». Там ссылаются на одну из моих предыдущих статей и сообщают, что хотели бы опубликовать новую статью моего авторства. Как видим, ни Нигерии, ни виагры, ни миллиона долларов; письмо не содержит никаких «внешних» признаков спама. Но, используя знания, которыми я располагаю, и абстрактно размышляя о процессе порождения спама, я могу счесть это письмо подозрительным.

Во-первых, мне известно, что спамеры пытаются выманивать у людей деньги, уповая на человеческую алчность.

Во-вторых, мне известно, что легально зарегистрированные журналы «открытого доступа»[167] сегодня практикуют покрытие расходов за счет платы за публикации (с авторов, а не с подписчиков); вдобавок я не занимаюсь клинической биологией ни в каком виде.

Все вместе позволяет мне выдвинуть гипотезу о происхождении и сути этого письма. Его рассылают, чтобы побудить ученых платить за публикации в сомнительных журналах. То есть передо мной тот же самый откровенный спам, пусть даже он лишен внешних признаков спама. Я могу сделать такой вывод лишь на основании одного образца, и при этом ничто не мешает мне продолжить проверку моей гипотезы, скажем, погуглить упомянутого «редактора» журнала.

В компьютерных терминах я начала с «генеративной модели», включающей абстрактные понятия, такие как алчность и обман, и описала процесс, подразумевающий мошенничество посредством электронной почты. Это описание дает возможность обнаруживать классический «нигерийский» спам, а также выявлять многие другие разновидности спама. Когда же приходит электронное письмо из журнала, разворачивается обратный процесс: «Это письмо, похоже, того типа, который, скорее всего, будет спамом».

Новая шумиха вокруг ИИ связана с тем, что исследователи искусственного интеллекта недавно разработали эффективные версии обоих методик познания. Но в самих методиках нет ничего нового.

Глубинное обучение снизу вверх

В 1980-х годах ученые-компьютерщики придумали оригинальный способ научить компьютеры выявлять закономерности в данных: речь о коннекционистской[168], или нейросетевой архитектуре (определение «нейро» до сих пор следует трактовать как метафору). В 1990-х годах все как будто успокоилось, но сравнительно недавно этот подход реанимировали – благодаря методикам глубинного обучения наподобие Google DeepMind.

Например, можно задать программе глубинного обучения набор изображений в категории «кошка», другой набор в категории «дом» и т. д. Программа может обнаружить признаки различения двух наборов изображений и использовать эту информацию для правильной классификации новых картинок. Особая техника машинного обучения, так называемое обучение без учителя, предусматривает выявление закономерностей в массивах данных без каких-либо категорий: машина просто ищет группы признаков (ученые в таких случаях говорят о факторном анализе). При глубинном обучении эти процедуры воспроизводятся на разных уровнях. Отдельные программы способны даже обнаруживать релевантные признаки в необработанных данных (пиксели и звуки); компьютер может начать с выявления в необработанных изображениях шаблонов, соответствующих углам и линиям, а затем искать в этих шаблонах другие, соответствующие граням, и т. д.

Другой пример подхода «снизу вверх», имеющий длинную историю – это обучение с подкреплением. В 1950-х годах Б. Ф. Скиннер, отталкиваясь от исследований Джона Уотсона[169], сумел, как хорошо известно, «запрограммировать» голубей на выполнение сложных действий – скажем, сопровождать ракеты «воздух – земля» до цели (чем ни военное применение ИИ?) – благодаря тщательно проработанной схеме поощрений и наказаний. Его базовая идея заключалась в том, что поощряемые действия будут повторяться и далее, тогда как караемых действий станут избегать, и в итоге это приведет к формированию желаемого поведения. Даже во времена Скиннера понимали, что регулярное повторение элементарных процессов может обеспечить комплексное поведение. Компьютеры предназначены для многократного выполнения простых операций в масштабах, непредставимых для человеческого воображения, и таким вот образом вычислительные системы могут обучиться поразительно сложным навыкам.