Искусственный интеллект – надежды и опасения — страница 49 из 60

[173]. Откуда берется этот способ творческого обучения и инноваций – можно лишь догадываться.

Однако анализ детского поведения может пригодиться программистам, обучающим компьютеры. Две особенности детского познания особенно поразительны. Дети учатся активно, а не просто пассивно усваивают данные, как ИИ. Ученые ставят эксперименты, а дети стремятся извлекать информацию из окружающего мира посредством бесконечных игр и вопросов. Недавние исследования показали, что такая практика на самом деле систематизирована, структурирована и хорошо адаптирована для поиска убедительных доказательств в поддержку формирования гипотез и выбора теорий[174]. Наделение машин любознательностью и предоставление им возможности активно взаимодействовать с миром может оказаться полезным подспорьем для организации более реалистического, более полноценного обучения.

Во-вторых, дети, в отличие от существующих ИИ, учатся в социальной среде и в контексте культуры. Люди не обучаются изолированно, они пользуются накопленной мудростью прошлых поколений. Недавние исследования показали, что даже дошкольники учатся через подражание и наглядные примеры других людей. При этом они не просто пассивно внимают учителям. Нет, они воспринимают информацию удивительно тонким, «чувствительным» образом, делая сложные выводы о том, откуда она поступает и насколько заслуживает доверия, а также систематически интегрируют собственный опыт с тем, что им довелось услышать [175].

Выражения «искусственный интеллект» и «машинное обучение» звучат пугающе. В некоторых отношениях мы беспокоимся обоснованно. Эти системы используются, например, для управления оружием, и это чревато серьезными проблемами. Тем не менее глупость «от природы» может нанести гораздо больший урон, нежели искусственный интеллект; мы, люди, должны стать намного умнее, чем были в прошлом, чтобы должным образом контролировать и регулировать новые технологии. Но у общества нет веских причин для апокалиптического (или утопического) отношения к ИИ, который якобы заменит людей. Во всяком случае, пока мы не преодолеем основной парадокс обучения – что лучший нынешний искусственный интеллект не в состоянии конкурировать с обычным четырехлетним ребенком.

Глава 22Мечты «алгористов» об объективности

Питер Гэлисон

историк науки, профессор-стипендиат Гарварда и соучредитель инициативы «Черная дыра»[176] в Гарвардском университете, автор книги «Часы Эйнштейна и карты Пуанкаре: империи времени».

Изучая историю науки, Питер Гэлисон уделяет особое внимание той области, где, образно выражаясь, теория пересекается с экспериментом.

«Довольно много лет я руководствовался в своей работе странным противостоянием абстрактных идей и чрезвычайно конкретных объектов», – сказал он мне однажды, стараясь объяснить свой образ мышления. На встрече в Вашингтоне, штат Коннектикут, он рассуждал о напряженности времен холодной войны между инженерами (наподобие Винера) и администраторами Манхэттенского проекта (тем же Оппенгеймером): «Когда [Винер] предупреждал об опасностях кибернетики, отчасти он пытался оспорить те зловещие формулировки, которыми пользовались люди вроде Оппенгеймера. Помните: «Если сияние тысячи солнц вспыхнуло бы в небе, это было бы подобно блеску Всемогущего… Я стану смертью, Разрушителем Миров». Уверенность в том, что физика вправе говорить с природой о Вселенной и мощи ВВС, одновременно отталкивала и манила. В некотором смысле мы наблюдаем то же самое снова и снова в последние десятилетия – нанотехнологии, рекомбинантная ДНК, кибернетика; я извещаю о пришествии науки, которая сулит спасение и гибель, а вы должны прислушаться ко мне, поскольку она может погубить вас. Этот искушающий, если угодно, нарратив сегодня воспроизводится также в области искусственного интеллекта и робототехники».

Мне было двадцать четыре года, когда я впервые познакомился с идеями Винера и встретился с его коллегами в Массачусетском технологическом институте, о чем рассказывалось во введении; в ту пору меня почти не интересовали предупреждения и тревоги Винера. Меня привлекали его строгие, даже радикальные взгляды на жизнь, обусловленные математической теорией коммуникаций, в которой сообщение являлось нелинейным. Согласно Винеру, «новые концепции коммуникации и управления подразумевают новую интерпретацию человека, человеческого познания Вселенной и общества». Из этого родилась моя первая книга, где теория информации – математическая теория коммуникации – трактовалась как модель всего человеческого опыта.

В недавнем разговоре Питер сказал мне, что начинает писать книгу – о конструировании, досадных помехах и мышлении, – в которой намерен изучить природу кибернетики как «черного ящика» и способы кибернетической репрезентации, цитирую, «фундаментальной трансформации познания, машинного обучения, кибернетики и человека».


Во второй из своих лучших книг[177] великий средневековый математик аль-Хорезми описал новую местную форму индийской арифметики. Его имя, вскоре по созвучию соотнесенное с «algorismus» (на позднесредневековой латыни), стало обозначать процедуры, применяемые к числам, – в конечном счете проникнув в форме «алгоритм» (по модели слова «логарифм») во французский и далее в английский языки. Лично мне нравится идея о сообществе современных алгористов, пусть спеллчекер исправно подчеркивает это слово. Для меня алгорист – это человек, исполненный подозрительности в отношении человеческих суждений, считающий, что эти суждения нарушают фундаментальные нормы объективности (и, следовательно, научности).

Ближе к концу XX столетия два психолога из университета штата Миннесота обобщили в своей статье обширный список литературы по темным водам предсказаний. С их точки зрения, одна сторона конфликта слишком долго, решительно – а потому аморально – придерживалась «клинического метода» прогнозирования, превозносившего все субъективное, «неформальное», «умозрительное» и даже «импрессионистское». К числу таких «клиницистов» принадлежали люди (так писали психологи), которые полагали, что могут тщательно изучать свои дисциплины, учреждать всевозможные комиссии и делать основанные на суждениях прогнозы о криминальных рецидивах, успехах обучения, медицинских результатах и т. п. Другая сторона конфликта, продолжали психологи, охватывала все, что отвергали «клиницисты»; ее сторонники ориентировались на формализм, механистичность и алгоритмы. Эти авторы видели в перечисленном триумф постгалилеевской науки. Последняя не просто извлекала пользу и выгоду из актуарного; в значительной степени она была механо-актуарной. Изучив 136 исследований по предсказаниям во всех областях, от вынесения приговоров до психиатрии, психологи показали, что в 128 работах прогнозы с использованием актуарных таблиц, уравнений множественной регрессии или алгоритмических циклов как минимум совпадали, а в основном превосходили по точности предсказания на основе субъективного подхода.

Далее в статье приводились семнадцать ошибочных обоснований, выдвигаемых «клиницистами». Среди них имелись сугубо эгоистические, продиктованные страхом потерять работу из-за пришествия умных машин. В других случаях приверженцам клиницизма не хватало образования для проверки статистических выводов. Некая группа заявляла, что не верит в формализм математики; еще одна рассуждала об актуарной «дегуманизации»; третья утверждала, что цель научного поиска заключается в понимании, а не в предсказании. Каковы бы ни были мотивы, говорилось в статье, совершенно аморально отрицать приоритет объективного перед субъективным, алгоритмического перед экспертным (личностным)[178].

Алгористическая точка зрения постепенно набирала силу. Энн Милгрэм занимала пост генерального прокурора штата Нью-Джерси с 2007 по 2010 год. Вступив в должность, она захотела узнать, кого арестовывают, осуждают и сажают в штате в тюрьмы – и за какие преступления. Как она сама призналась на лекции проекта TED Talk, ни данных, ни аналитики практически не было. Применяя статистическое прогнозирование, по словам Милгрэм, правоохранительные органы Кэмдена за время ее пребывания на посту прокурора сумели снизить количество убийств на 41 процент и спасти тридцать семь жизней, а общий уровень преступности снизился на 26 процентов. Присоединившись к фонду Арнольда[179] в качестве вице-президента по уголовному правосудию, она собрала команду ученых и статистиков для разработки инструментов оценки рисков; по сути, миссия команды заключалась в выявлении способов помещения «опасных людей» и освобождения тех, кто не представлял угрозы для общества. «Причина в том, как именно мы принимаем решения, – говорит Милгрэм. – Судьи руководствуются благими намерениями, когда выносят приговоры с поправкой на риск для общества, но беда в том, что они действуют субъективно. Они как бейсбольные скауты двадцатилетней давности, которые полагались на чутье и опыт при оценке потенциальных рисков и перспектив. Люди субъективны, а мы хорошо знаем, что бывает при субъективных решениях, – вероятность ошибки велика». Команда Милгрэм выявила более девятисот факторов риска, из которых девять оказались наиболее предсказуемыми. Самыми актуальными для исследователей были следующие вопросы: совершит ли человек новое преступление? прибегнет ли он к насилию? вернется ли он обратно на скамью подсудимых? Нам нужна, говорит Милгрэм, «объективная мера риска», которая должна отражаться в судейских решениях. Мы знаем, что алгоритмические статистические процессы эффективны. По ее словам, «вот почему «Гугл» стал «Гуглом» и почему в спортивных играх далеко не всё определяется размером кошелька владельца команды»