Что касается веса и размеров ИСЗ, то можно сказать, что их вес зависит в основном от возможностей ракеты-носителя, а размеры спутника — от размеров третьей ступени этой ракеты. Считают, что ИСЗ, отделяющийся от последней ступени, не обязательно должен быть заключен внутри самой ракеты. Он может в некоторых случаях находиться в углублении носовой части ракеты. В этом случае диаметр ИСЗ может превосходить диаметр носителя, но не очень сильно, так как это может привести к изменению баллистических характеристик самой ракеты и к значительному увеличению сопротивления воздуха.
Полагают, что в некоторых случаях будет выгодно применить специальный обтекаемый колпак (защитный конус), который будет надеваться на ИСЗ на время его полета в ракете. После выхода на орбиту колпак (защитный конус) будет отбрасываться, а ИСЗ вытолкнут из специального гнезда в носовой части ракеты с помощью сжатого воздуха или пружиной (рис. 34–35). Первый советский искусственный спутник Земли был закрыт таким защитным конусом. В тот момент, когда двигатель последней ступени закончил свою работу, защитный конус был сброшен, спутник отделился от ракеты и начал двигаться самостоятельно. На первых порах шарообразный спутник, ракета-носитель и защитный конус двигались на небольшом расстоянии друг от друга, а затем разошлись. Объясняется это небольшим различием в их скорости и главным образом тем, что все три тела испытывали различное торможение в верхних слоях атмосферы.
Спутник может и не отделяться от последней ступени ракеты-носителя. Как известно, второй советский спутник Земли представляет собою последнюю ступень ракеты, достигшей скорости около 8 км в секунду на эллиптической орбите, наибольшее удаление которой от земной поверхности составляет свыше 1700 км.
Скажем несколько слов о материале, из которого может быть изготовлен корпус спутника.
Корпус должен быть легким, а поэтому его делают тонким, но предусматривают изнутри подкрепляющие ребра.
Материал корпуса также должен быть легким и достаточно прочным, во-первых, для того, чтобы обеспечить возможность надежного закрепления приборов внутри ИСЗ, а, во-вторых, для того, чтобы противостоять воздействию микрометеоритов. Он должен обладать также малой чувствительностью к значительным колебаниям температуры и способностью хорошо отражать радиоволны.
Такими материалами могут явиться различные сплавы на основе алюминия или магния, причем в некоторых случаях корпус должен иметь еще и специальные наружные покрытия.
Иногда, например, при изучении с помощью магнитометра электрических токов в ионосфере требуется, чтобы корпус спутника не обладал магнитными свойствами и не проводил электрического тока; другими словами, при этих условиях корпус не может быть металлическим. В этом случае он, очевидно, может изготовляться из каких-либо сортов пластмассы, обладающих высокими механическими качествами. (Как известно, существуют пластмассы, прочность которых почти не уступает прочности стали.)
Предложен проект спутника Земли, имеющего форму реактивного самолета, на котором сможет поместиться один человек. Этот спутник будет иметь двигатель, который при весе в 4,5 т будет потреблять около 15,5 кг топлива за каждый оборот по орбите, совершаемый со скоростью 28 000 км/час на высоте 120 км. Таким образом, при запасе топлива примерно в 1,5 т он мог бы оставаться на орбите в течение 6 дней, затрачивая на каждый оборот около 1,5 часа.
Такой спутник, имеющий двигатель и летящий на сравнительно небольшой высоте, предложил построить один из конструкторов немецкой баллистической ракеты «Фау-2», ныне научный работник американской фирмы «Конвэр» Крафт Эрике. Он назвал его сателлоидом[28].
В своем докладе в вашингтонском отделении американского ракетного общества К. Эрике сообщил, что по его подсчетам для сателлоида весом 4500 кг с площадью крыльев в 152 кв. м, делающего на высоте около 100 км один оборот вокруг Земли за 85 минут, на преодоление сопротивления воздуха на этой высоте потребуется тяга всего 5–7 кг. Если запас топлива принять равным даже 450 кг, то с этим запасом топлива сателлоид может сделать весьма значительное число оборотов, поскольку необходимый расход топлива составит всего 1 л на 3570 км пути (на высоте 115 км).
К. Эрике заявил, что при помощи сателлоида можно будет собрать данные в зоне сумерок атмосферы, которая недоступна для современных пилотируемых самолетов и слишком низка для постоянных (стационарных) спутников. Эти сведения будут очень важны для разрешения проблемы обратного входа в атмосферу, которая является наиболее сложной для конструкторов межпланетных пилотируемых аппаратов и беспилотных межконтинентальных снарядов. Сателлоид может также быть использован для обучения и тренировки экипажей межпланетных кораблей.
По сообщению К. Эрике, в настоящее время правительство США финансирует разработку летательных аппаратов типа сателлоида; ряд фирм получил заказы на разработку экспериментальных высотных самолетов, рассчитанных на скорость полета, соответствующуюМ= 8–10, которые могут быть первым шагом на пути к разработке сателлоида.
Проект Эрике интересен тем, что он представляет собою промежуточную ступень между сверхскоростным реактивным самолетом и обитаемым спутником Земли.
Дальнейшей ступенью к освоению космоса будет создание обитаемых автоматизированных ИСЗ и межпланетных станций.
Для осуществления этого этапа придется решить ряд задач, о которых упоминалось выше, причем самой характерной из них является изучение влияния особенностей полета в космосе на человека.
Какими характерными особенностями, по сравнению с описанными ранее типами спутников, должна обладать космическая станция?
Во-первых, она должна обладать значительно бóльшими размерами для того, чтобы в ней с необходимыми удобствами могла разместиться команда, а также продукты питания, запасы воздуха, приборы кондиционирования воздуха и т. д.
Во-вторых, должна быть предусмотрена возможность связи такой станции с Землей с помощью специальных транспортных ракет.
Эти ракеты будут отличаться от ракет, применявшихся для запуска ИСЗ, тем, что они будут обитаемыми. Естественно, что они должны иметь приспособления как для швартовки, так и для обратного спуска на Землю.
Необходимо еще раз отметить, что уже в настоящее время в ряде стран наряду с проектами необитаемых ИСЗ производятся необходимые исследования и разрабатываются проекты обитаемых межпланетных станций и межпланетных ракет.
В последние годы на конгрессах и собраниях межпланетных и ракетных обществ был предложен ряд проектов обитаемых ИСЗ и межпланетных станций, а также ракет для связи с ними. Высота орбиты для межпланетных станций в разных предложениях называлась от 500 до 38 800 км, а состав команды определялся от 3 до 400 человек и более.
Например, английский ученый Хеппнер предложил создать станцию-спутник на высоте 1640 км, которая служила бы базой для отправки экспедиции на Луну. Проект предусматривает, что спутник будет состоять из двух головных секций и двух корпусов третьей ступени ракет, отправляемых с Земли.
К. Эрике в своей работе под названием «Анализ орбитальных систем» предлагает создать целую систему межпланетных станций и там же дает эскизные проекты пассажирской и грузовой ракет для связи с ними. Он же является руководителем работ, которые проводятся фирмой «Конвэр» в области создания межпланетных обитаемых станций. Программа работ предусматривает исследование различных видов ракетного топлива, а также разработку ядерных реакторов, которые могут использовать в качестве рабочего вещества газы, составляющие атмосферу других планет.
Наиболее серьезно теоретически обоснованным проектом такого рода является проект, предложенный известным немецким ученым, ныне работающим в США, Вернером фон Брауном. На его проекте мы более подробно остановимся при рассмотрении вопроса о военном значении искусственных спутников Земли.
Американец Ф. Тинслей описывает межпланетную станцию и ракетный корабль, необходимый для ее постройки и связи с ней (рис. 36).
Эта огромная обитаемая ракета, над которой видны вертолеты, производящие погрузку на нее всего необходимого для межпланетной станции, является сложным техническим сооружением. Внизу показано складное устройство для приземления и подъемные лестницы, находящиеся внутри опор, которые служат, кроме того, и для шлюзования.
Ввиду того, что на этой ракете предусматривается наличие атомного двигателя, во избежание заражения Земли для подъема и для посадки применяются обыкновенные ракетные двигатели, расположенные на стабилизаторах. Атомный двигатель включается только на время полета в космосе. Три опоры имеют амортизаторы, которые автоматически выравнивают ракету при приземлении на неровный грунт, а в полете они полностью втягиваются внутрь. Колодцы, расположенные в этих опорах, имеют трапы, ведущие к различным местам корабля. Внутренние поверхности этих опор в случае необходимости могут образовывать аварийные спуски на грунт.