Строительство этой станции будет продолжаться несколько лет. Сразу же по прибытии первых кораблей она вступит в действие, имея весьма скромные размеры. Затем постепенно будет производиться увеличение ее размеров до проектируемых, расширение ее функций. В течение всего этого времени станция будет бесперебойно действовать. Д. Ромик предлагает такую последовательность сборки станции.
Сразу же после прибытия первых ракет на орбиту их баки будут освобождены от остатков топлива, промыты, очищены и превращены в жилые помещения, питаемые от системы кондиционирования воздуха, с герметизацией, регулируемой температурой и доступом в них через воздушные тамбуры. Первая очередь такой межпланетной станции будет представлять трубу диаметром в 2,7 м и длиной в 150 м, составленную из двух ракет, соединенных торцами, как показано на рис. 41, а. Конструкция ракет должна допускать такое их соединение с минимальным количеством операций. На случай аварии около станции всегда находятся недемонтированные ракеты и прибывающие ракеты с материалом для дальнейшего расширения станции, которые смогут доставить людей на Землю. Общий вид ракеты представлен на рис. 41, б.
Вторая очередь станции будет иметь диаметр примерно 23 м, длину около 300 м и вращающееся колесо диаметром в 150 м. На расширение станции от «первой очереди» до «второй» понадобится 65–70 рейсов транспортных ракет, которые доставят 250 т материалов для цилиндрической части, 750 т — для колеса и 500 т оборудования. Последовательность сборки второй очереди показана на рис. 41, в. Вокруг трубы, представляющей собой первую очередь межпланетной станции, будет монтироваться сборный каркас и обшивка цилиндра диаметром в 23 м с облицовкой для защиты от метеоритной пыли, причем, как и вначале, очень широко будут использоваться элементы конструкции самих ракет. Внутренний объем будет также разбит на отсеки, которые вступают в строй по мере их герметизации.
Вращающееся колесо служит для создания эффекта тяготения, необходимого для нормальных условий жизни человека. Конструкция его предусматривается из кольцевых секций, позволяющих также постепенно наращивать его размеры. Наконец, в третьей стадии строительства межпланетная станция приобретает окончательные размеры и форму. Вид станции в процессе строительства и окончательный представлен на рисунке 41, г. Доставка необходимых материалов для строительства третьей очереди займет 3,5 года при условии, что будет совершаться ежедневно два рейса грузовых ракет. На внешней оболочке межпланетной станции будут расположены приспособления для регулирования количества проникающего внутрь излучения, контроля за траекторией и ориентировкой станции, наблюдательные и навигационные посты, радиолокационное, оптическое и астрономическое оборудование, ангары и парки для межпланетных и других ракет. Доступ солнечного света будет регулироваться с помощью жалюзи. За ними могут располагаться зеркала, собирающие, рассеивающие или выделяющие требуемую составляющую солнечного излучения. Инфракрасное излучение можно будет использовать для нагрева, ультрафиолетовое — для стерилизации и кондиционирования воздуха, видимое — для освещения, а все вместе для получения электроэнергии. На такой большой станции, «Земле в миниатюре», очевидно, будет необходимо создание замкнутого жизненного цикла с растениями и животными. Иначе на этот город-спутник придется ежедневно забрасывать 1300–1400 т продовольствия, воды и кислорода, что составляет около 75 железнодорожных вагонов. (Очевидно, при разумном сокращении «штата» такой станции потребности могут быть существенно сокращены.)
Как уже говорили, вращающееся колесо служит для создания искусственных сил тяжести, так как предполагают, что отсутствие тяжести может привести к ослаблению жизнедеятельности человеческого организма. В колесе на разных этажах будут расположены жилые помещения, спортплощадка, больница — все необходимое для нормальной жизни многотысячного населения города-спутника. Колесо снабжено механизмом автоматической балансировки. Этот механизм вступает в действие, когда распределение грузов и людей в колесе нарушает балансировку. Переход людей со стационарной части во вращающуюся и обратно осуществляется вблизи оси вращения, где линейные скорости незначительны. Для такого перехода предусмотрены перемещающиеся кабины, которые герметично могут соединяться с выходом, расположенным на вращающемся кольце; хотя в стационарной и во вращающейся частях предусмотрено снабжение воздухом, кабины для перехода должны быть герметичными на случай аварии в одной из частей.
Перемещение внутри колеса с этажа на этаж осуществляется с помощью лифтов.
Передача электроэнергии и воздуха возможна с помощью кольцевых скользящих соединений. Разработана также аппаратура, обеспечивающая безопасность населения при столкновениях с крупными метеоритами. Для этого на спутнике имеются две самостоятельные системы обеспечения воздухом в колесе и стационарной части, снабженные резервными баллонами и сообщающиеся между собой. Автоматическое управление всеми жизненно важными агрегатами дублируется ручным управлением. При понижении давления будут автоматически закрываться герметичные двери между изолированными отсеками и срабатывать аварийная сигнализация. Двери снабжены воздушными тамбурами для прохода в зону пониженного давления, чтобы там можно было производить ремонтные и спасательные работы. В каждом отсеке имеются герметичные кабины с самостоятельным снабжением воздухом, телефонной связью, защитными костюмами и запасами кислорода.
Известно, что столкновение с крупным метеором — явление весьма редкое. Предполагается, что описанная выше система сигнализации и герметизации обеспечит сохранение нормальных жизненных условий населения станции до устранения последствий столкновения с крупным метеором. Подобный проект по своим масштабам кажется фантастическим. Однако быстрое развитие техники дает возможность предполагать, что создание межпланетных стационарных станций и летающих «городов» может явиться выполнимой задачей.
Глава Ⅴ.ОСНОВНОЕ ОБОРУДОВАНИЕ ИСЗ
В предыдущих главах мы уже встречались с рядом приборов, входящих в состав оборудования ИСЗ.
Настоящая глава имеет основной целью ознакомить читателя в общих чертах с принципом действия и устройством главнейших приборов для получения более полного представления о ИСЗ.
Прежде чем переходить непосредственно к рассмотрению приборов, устанавливаемых на ИСЗ, познакомимся с основными требованиями, которые предъявляются к таким приборам.
Основные из этих требований заключаются в жестком ограничении веса, габаритов и потребляемой ими энергии.
В основе их конструирования должен лежать учет всех необычных и особо тяжелых условий космоса, а именно: большой диапазон изменения ускорений, резкий температурный перепад (от плюс 400° до минус 270℃); скачки атмосферного давления, лежащие в пределах от 750 мм рт. ст. до 0 мм рт. ст. Находясь на орбите в космосе, спутник будет подвергаться бомбардировке элементарными частицами и космической пылью. Под их воздействием поверхность спутника, а следовательно, и смотровые окна могут постепенно терять прозрачность и разрушаться.
Установлено, что ультрафиолетовые лучи разрушают органические и пластические вещества и краски. Космические же лучи разрушают соединения в полупроводниках.
Условия, в которых придется работать приборам ИСЗ, полностью еще неизвестны.
При проектировании аппаратуры для первых спутников ученые основывались лишь на сравнительно малом опыте работы с ракетами для исследования верхних слоев атмосферы. Этот опыт говорил о реальности создания нужных приборов. Пути их улучшения и усовершенствования покажет анализ результатов запуска первых ИСЗ.
Поскольку предполагается запуск многих ИСЗ, то нет необходимости на каждый спутник ставить полный комплекс аппаратуры, предназначенный для решения всех задач, возлагаемых на ИСЗ. Каждый спутник может быть оборудован аппаратурой, решающей только ограниченный круг специальных задач.
Уже на первых искусственных спутниках Земли радиооборудование занимает важнейшее место. Все научные приборы спутника будут работать вхолостую, не принося никакой пользы, если измерения, производимые ими, не передавать на Землю. Так как возвращение первых спутников на Землю пока еще не решенная задача, то передать данные научных исследований со спутника на Землю возможно единственным способом — с помощью радио.
В настоящее время методы передачи по радио большого числа самых различных измерений достигли высокого совершенства, появилось целое направление радиотехники, решающее эти задачи, — радиотелеметрия.
Наибольшее число измерений может передать радиотелеметрическая система с временным разделением каналов. Рассмотрим, как она работает, по приведенной на рис. 42 блок-схеме.
Под прямоугольниками, обозначенными цифрами 1, подразумеваются так называемые датчики. На ИСЗ датчики — это все приборы, например, счетчики космических, ультрафиолетовых и других лучей, термисторы, магнитометры, манометры, астрономические приборы и др., которые дают электрический ток, характеризующий измеряемую ими величину и меняющийся при ее изменении. Цифра