Искусственный спутник земли — страница 31 из 56

S2. Поскольку круги равных высот пересекаются в двух точках (С и D), расположенных на значительном расстоянии друг от друга, а вероятное местоположение наблюдателя (корабль, самолет) обычно бывает известно, то выбирается точка в районе предполагаемого места. В нашем случае координаты точки С и являются искомыми координатами местонахождения наблюдателя на земной поверхности. Очевидно, для решения этой задачи необходимо иметь оптическое устройство, позволяющее определять направление на звезды и измерять углы между плоскостью горизонта и направлением на звезды. В мореходной и авиационной практике в качестве таких приборов служат секстанты.

Секстант — это прибор, состоящий из оптического устройства, с помощью которого осуществляется визуальное наблюдение за звездой, и вертикали, относительно которой измеряется зенитное расстояние наблюдаемой звезды.

В подавляющем числе случаев в качестве вертикали секстанта используется хорошо известный жидкостной уровень, работающий на принципе маятника.

Если методы астрономической навигации, использующие секстанты, могут быть приемлемы для искусственного спутника Земли, то сами приборы — секстанты непригодны для непосредственного использования на ИСЗ.

Астронавигационными приборами, устанавливаемыми на искусственном спутнике Земли, должно осуществляться автоматическое слежение за небесными светилами, а также должен применяться принципиально новый способ определения вертикали.


6. Определение направления вертикали на ИСЗ

Если на Земле положение вертикали определяется без какого-либо труда, так как любое подвешенное на нити тело дает направление вертикали, то в условиях спутника Земли определение направления линии отвеса, или вертикали, представляет чрезвычайно сложную задачу. Объясняется это тем, что вследствие равенства центробежной силы и силы тяготения все тела внутри ИСЗ невесомы, и определение направления вертикали с помощью маятниковых устройств не представляется возможным.

В связи с этим на искусственном спутнике Земли необходимо иметь специальное устройство, определяющее вертикаль. Одним из возможных способов определения ее в условиях ИСЗ является оптический способ. Суть этого способа заключается в том, что на ИСЗ устанавливается трехлучевая оптическая система, следящая за видимыми краями Земли. Углы между оптическими осями телескопов, следящих за видимыми краями (горизонтом) Земли, одинаковые, благодаря чему направления оптических осей телескопов образуют трехгранную пирамиду, опирающуюся своими гранями (рис. 49) на поверхность Земли, с вершиной на ИСЗ. По законам геометрии продолжение оси такой пирамиды обязательно пройдет через центр Земли. Она и будет искомой вертикалью на ИСЗ.

Рис. 49. Трехлучевая фотооптическая система для наблюдения за видимыми краями Земли

Несмотря на кажущуюся простоту, практическое выполнение такой вертикали встречает существенные трудности, одновременное слежение за освещенными и затененными поверхностями Земли является сложной технической задачей. Кроме того, неровности поверхности Земли (горы), а также облачность и дымка могут вызвать погрешности в определении вертикали. Для устранения влияния облачности и дымки могут быть использованы световые фильтры, позволяющие видеть тепловые излучения поверхности Земли в инфракрасной области спектра.

Точность трехлучевой оптической вертикали может быть высокой. Так, например, при полете ИСЗ на высоте 500 км и превышении отдельных участков горизонта на 10 км отклонение оси оптической пирамиды от истинной вертикали может не превышать один градус.

Другие известные в настоящее время способы определения вертикали на ИСЗ имеют малую точность.

В качестве примера рассмотрим способ, использующий экранирующее свойство земного шара по отношению к изотропной составляющей космических лучей. Эта составляющая состоит в основном из нейтронов, не отклоняемых магнитным полем Земли.

Чтобы использовать это свойство, расположим на спутнике 2–4 счетчика космических частиц направленного действия и направим их на линию горизонта (рис. 50) так же, как были направлены телескопы в рассмотренном оптическом устройстве.

Рис. 50. Определение вертикали с ИСЗ на Землю с помощью 2–4 счетчиков направленного действия

Если под действием каких-либо причин какой-то счетчик окажется направленным ниже линии горизонта, то счетчик, расположенный против него, будет направлен выше линии горизонта. Тогда вследствие экранирующих свойств Земли число частиц, регистрируемых первым счетчиком, станет равным нулю, а у второго счетчика число регистрируемых частиц резко возрастет.

Поступающий от счетчика разностный сигнал после усиления можно подать на устройство типа вращающихся маховичков, восстанавливающее направление вертикали на спутнике к центру Земли. Предполагают, что такой метод стабилизации позволит получить вертикаль на спутнике с ошибкой не более 10°.

Подобная ошибка является большой для астрономической ориентировки. Но такая точность определения вертикали достаточна для решения некоторых задач, не требующих большой точности ориентации ИСЗ в пространстве.

Оптическое устройство, следящее за краями Земли, и устройство с направленными счетчиками требует автоматического изменения угла между ними (α) в зависимости от высоты полета ИСЗ над Землей, которая будет все время меняться, так как спутник имеет эллиптическую орбиту, что вызывает усложнение этих устройств.


7. Следящее и счетно-решающее устройства астроориентировки

Как было указано выше, для определения координат местонахождения ИСЗ необходимо, кроме вертикали, иметь и оптические устройства — телескопы, автоматически следящие за двумя звездами. Эти фотоследящие устройства содержат в себе оптическую систему телескопов, направляющих световой поток от звезд на фотоэлементы. Электрические сигналы от фотоэлементов передаются через усилители на инерционные двигатели, которые направляют телескопы на звезды. При отклонении каждого из телескопов от направления на соответствующую звезду такая следящая система автоматически возвращает его обратно.

Вполне очевидно, что выполнять какие бы то ни было построения на глобусе, как это показано было выше, в условиях ИСЗ не представляется возможным.

Эта задача должна решаться автоматически электронным счетно-решающим устройством. На вход этого счетно-решающего устройства поступают сигналы, соответствующие измеренным зенитным расстояниям двух звезд.

Кроме того, перед запуском ИСЗ в счетно-решающее устройство вводятся координаты географических мест светил (ГМС). Изменение долготы ГМС осуществляется от часов, которые изменяют долготу на 360° в течение звездных суток. На основании измеренных и заданных данных счетно-решающее устройство выполняет математическую операцию, сводящуюся к определению координат точек пересечения двух кругов на сфере. По существу задача сводится к решению двух тригонометрических уравнений с двумя неизвестными — широтой и долготой географического места ИСЗ.

Полученные в результате автоматической работы счетно-решающего устройства координаты ИСЗ поступают на соответствующие приборы, а также могут быть переданы по телеканалам связи на Землю.

В процессе движения искусственного спутника по орбите вполне возможна потеря видимости одной или обеих звезд вследствие того, что Земля может оказаться между искусственным спутником и наблюдаемыми звездами. Следовательно, астроориентатор должен автоматически переключаться на другие видимые и удобные для навигации звезды. Но для выполнения этого необходимо вводить в счетнорешающее устройство координаты географического места этих звезд. С этой целью в счетно-решающем механизме должно быть предусмотрено устройство для задания программы перехода с одних звезд на другие, а координаты ГМС звезд, входящих в программу, должны задаваться перед запуском ИСЗ. Выбор удобных для навигации звезд производится с учетом того, чтобы в процессе движения ИСЗ по орбите между очередными наблюдаемыми звездами была разность азимутов[33] около 90°, а зенитные расстояния не были бы малы. Удовлетворение этих условий дает возможность повысить точность определения широты и долготы ИСЗ. Поясним эти два важных требования.

Как было указано выше, географическое место искусственного спутника Земли определялось как точка пересечения двух кругов равных высот звезд. Угол ΔА между касательными к кругам равных высот в их точке пересечения как раз и есть разность азимутов.

Разность азимутов может быть наглядно представлена на рис. 51, где h1 и h2 — высота светил (звезд), ΔА — разность азимутов. Из рис. 51 видно, что если значения h1 и h2 близки к нулю, то звезды близки к горизонту.

Рис. 51. Определение разности азимутов: h1 и h2 — высота светил, Z1 и Z2 — зенитные расстояния, ΔA — разность азимутов; В — местонахождение ИСЗ

Если угол между касательными мал (см. рис. 52), то определение положения точки пересечения кругов равных высот становится затруднительным.

Рис. 52. Разность азимутов ΔА слишком мала и определение положения точки пересечения кругов равных высот затруднительно:
Z1 и Z2 — зенитные расстояния; С и D — точки пересечения кругов

Наиболее точное определение точки пересечения кругов равных высот получается в том случае, когда разность азимутов близка к 90° (рис. 53).

Рис. 53. Разность азимутов близка к 90°, определение точки пересечения кругов равных высот наиболее точное: