Искусственный спутник земли — страница 32 из 56

Z1 и Z2 — зенитные расстояния; С и D — точки пересечения кругов

Величина зенитного расстояния определяет радиус круга равных высот. Если зенитное расстояние мало (рис. 54), то две точки пересечения кругов равных высот (точка С и точка D) могут быть близки друг к другу, и счетно-решающее устройство может не различить разницы между координатами этих двух точек, что приведет к неправильному определению местоположения искусственного спутника Земли.

Рис. 54. Зенитное расстояние Z1 мало по сравнению с Z2, точки пересечения кругов равных высот С и D трудно различимы

Из приведенных примеров видно, какое важное значение имеет выбор удобных для астронавигации звезд. Этот выбор для различных вариантов запуска ИСЗ может быть произведен астронавтами заблаговременно.

К устройству, осуществляющему астроориентировку ИСЗ, предъявляются весьма высокие требования в отношении точностей. Например, ошибка в определении вертикали в 1° приводит к появлению ошибки в определении координат ИСЗ до 111 км на земной поверхности.


8. Измерение высоты полета ИСЗ

Следует заметить, что описанное выше устройство, состоящее из оптического построителя вертикали и фотоэлектронного следящего устройства за звездами, которое обычно называется астроориентатором, может также измерять и третью координату — высоту полета ИСЗ.

Измерение высоты осуществляется вертикалью астроориентатора.

Как видно из рис. 55, треугольник AO1O, образованный одной из граней AO1 и осью OO1 оптической пирамиды, содержит одну известную сторону ОА, равную радиусу (R) Земли, и измеренный угол α.

Рис. 55. Определение высоты ИСЗ:
Н — высота полета ИСЗ; α — измеренный угол; R — радиус Земли; О — центр Земли, O1 — центр ИСЗ; А — точка касания луча; В — географическое место ИСЗ

Так как треугольник AOO1 является прямоугольным, то сторона его OO1 легко определяется. Отсюда следует, что высота полета Н получается путем вычитания из стороны OO1 треугольника отрезка ОВ, равного радиусу Земли. Эта геометрическая задача решается также счетно-решающим устройством астроориентатора, находящегося на спутнике.

Описанный выше принцип построения астроориентатора не является единственным. Он может быть основан также на других принципах[34]. Магнитный принцип ориентировки и стабилизации ИСЗ может обеспечить приемлемую точность определения вертикали. По-видимому, этот последний принцип найдет широкое применение на различных типах автоматизированных и обитаемых спутниках типа сателлоида.

Конструкция астроориентатора, несмотря на кажущуюся простоту заложенных в нем принципов, является сложнейшим устройством, осуществление которого связано с разрешением принципиально новых технических задач с привлечением последних достижений оптики, автоматики и телемеханики. К этому устройству предъявляются жесткие требования в части точности, малых весов, габаритов и потребляемой энергии.

При рассмотрении ориентации и стабилизации спутника мы не учитывали того, что плоскость солнечной батареи должна быть всегда направлена на Солнце. Это осуществляется специальной следящей за Солнцем системой, поворачивающей плоскость батареи вокруг горизонтальной оси аа' и вертикальной оси вв' с помощью моторов 1 и 2 (рис. 56).

Рис. 56. Следящее устройство, постоянно удерживающее солнечную батарею спутника Земли в направлении на Солнце:
аа' — горизонтальная и вв' — вертикальная оси вращения солнечной батареи

При отклонении солнечной батареи от направления на Солнце от специального устройства, не показанного на рисунке, измеряющего величину этого отклонения, подаются сигналы на мотор 1 или мотор 2 такого знака, чтобы при своем вращении они восстанавливали необходимое положение батареи.

Такое слежение за Солнцем будет осуществляться и при других способах стабилизации, например, относительно гироскопов, находящихся на ИСЗ, или относительно звезд, так как необходимость в электроэнергии всегда остается.

Вопрос о том, стабилизировать ли корпус ИСЗ на Солнце или же по земной вертикали, должен решаться в зависимости от соотношения масс аппаратуры, предназначенной для исследования Солнца вместе с солнечной батареей, и аппаратуры для исследования и фотографирования Земли.

Если первый комплекс оборудования (по массе) больше второго, то корпус ИСЗ вместе с солнечной батареей нужно стабилизировать на Солнце. Второй же комплекс стабилизировать на Землю отдельно от корпуса, и наоборот.

Если второй комплекс больше по массе, чем первый, то корпус ИСЗ следует стабилизировать по земной вертикали, а солнечную батарею стабилизировать отдельно на Солнце, как показано на рис. 56. В этом случае получается наименьший расход энергии, потребляемой автоматической системой стабилизации.

Стабилизация всех спутников, снабженных приборами, необходима, так как неизменность положения их (например, относительно Солнца, звезд, направления к центру Земли или другого определенного направления) облегчает получение и раскрытие смысла результатов измерений.


9. Стабилизирующие элементы спутника

Для продления активного срока жизни ИСЗ необходимы более долговечные источники электроэнергии. Надо полагать, что в ближайшие годы наиболее перспективными источниками питания на спутниках будут солнечные батареи, собранные на кремниевых фотоэлементах, с помощью которых будут подзаряжаться специальные малогабаритные аккумуляторы. Естественно, эта батарея должна быть ориентирована в направлении на Солнце во время движения ИСЗ. При этом, как уже упоминалось, сама солнечная батарея может быть жестко связана с корпусом ИСЗ или не связана с ним. В первом случае одновременно с ориентацией солнечной батареи возможна ориентация на Солнце или другие светила и ряда научных приборов, жестко связанных с корпусом ИСЗ.

Для угловой ориентации осей спутника относительно различных опорных тел (Земли, Солнца, Луны, звезд и т. п.) могут быть использованы только два способа:

1) с помощью реактивных микродвигателей;

2) с помощью вращающихся инерционных масс.

Следует учитывать, что первый способ может оказаться малоприемлемым, так как при его применении происходит загрязнение окружающего пространства продуктами рабочего вещества, отбрасываемого соплами реактивных микродвигателей.

Очевидно, более рациональным будет второй способ, предложенный еще К. Э. Циолковским[35]. Этот способ основан на законе сохранения главного момента количества движения, открытого 200 лет назад Ньютоном. Закон весьма прост.

Поместим в теле ИСЗ инерционную массу в виде диска или кольца, которую можно приводить во вращение относительно тела ИСЗ двигателем. Если эту массу привести во вращение, то реактивная сила ее будет стремиться вращать тело ИСЗ в противоположную сторону.

Таким способом можно остановить в пространстве вращение оболочки спутника, если оно имеется, и повернуть тело спутника на желаемый угол, то есть осуществить угловую ориентацию спутника относительно опорного тела. Таким образом, в качестве стабилизирующих элементов могут быть использованы инерционные массы или специальные двигатели с инерционным ротором, а также реактивные микродвигатели, которые играют роль управляющих органов в условиях спутника (то есть в условиях невесомости и безвоздушного пространства).

Очевидно, что реальная система стабилизации спутников предполагает сочетание этих двух методов, так как система реактивных сопел способна устранять большие возмущающие моменты, но не дает необходимой точности стабилизации, в то время как инерционные массы способны осуществить весьма точную стабилизацию, но возможности их в смысле отработки внешних возмущений ограничены.




Глава Ⅵ.ПРОДОЛЖИТЕЛЬНОСТЬ СУЩЕСТВОВАНИЯ ИСЗ И НАБЛЮДЕНИЕ ЗА НИМ


1. Три орбиты ИСЗ

Мы уже говорили, что искусственные спутники Земли будут выполнять самые разнообразные задачи. В зависимости от задач будет избираться и соответствующая орбита, зависящая в свою очередь от того, каким образом и где будет осуществлен запуск ИСЗ.

Мы уже знаем, что расстояние орбиты до Земли определяет скорость спутника (круговую скорость) и количество оборотов, совершаемых им вокруг Земли в сутки. Например, первый советский ИСЗ обходил вокруг Земли в сутки 15 раз (один полный оборот его, таким образом, занимает 96 минут).

За те же 96 минут Земля повернется вокруг своей собственной оси на 24° так, что спутник, сделавший один полный оборот, уже окажется над другими странами и с каждым новым оборотом будет пролетать над все новыми точками Земли. Это справедливо для любой орбиты за исключением одной: если плоскость орбиты будет совпадать с плоскостью экватора, то спутник будет пролетать всегда над одними и теми же странами, расположенными на экваторе. Если плоскость орбиты спутника пройдет через полюса, то в течение суток он побывает в разное время над различными странами мира.

В любом промежуточном положении, т. е. если плоскость орбиты будет составлять любой угол с плоскостью экватора, спутник, вращаясь вокруг Земли, будет проходить над различными земными географическими точками, заключенными в пределах удвоенного такого угла.

Указанные три положения орбиты искусственного спутника Земли (полярная, экваториальная и наклонная) представлены на рис. 57.