Искусственный спутник земли — страница 51 из 56

1/15 больше, чем для первого спутника. На такую же величину возросло и расстояние на поверхности Земли между трассами двух соседних витков.

Сопротивление земной атмосферы вызывает торможение спутника. Орбита его при этом изменяет свои размеры и форму. Вследствие того, что на больших высотах атмосфера чрезвычайно разрежена, силы торможения, действующие на спутник, невелики. Поэтому изменение параметров орбиты происходит весьма медленно. Поскольку плотность атмосферы быстро убывает с высотой, торможение происходит в основном в области перигея, т. е. в области, прилегающей к точке наименьшего удаления от поверхности Земли. В точке апогея, т. е. в точке наибольшего удаления, спутник движется на такой большой высоте, что находится в космическом пространстве вне пределов земной атмосферы, которая, по теоретическим данным, простирается до высоты порядка 1000 километров над поверхностью Земли.

Торможение спутника зависит не только от плотности атмосферы, но также и от формы спутника и от отношения его веса к площади сечения (от так называемой поперечной нагрузки). При большей поперечной нагрузке потеря скорости будет меньше.

Два спутника, выведенные первоначально на одну и ту же орбиту, но имеющие различную величину торможения, будут по истечении некоторого времени двигаться по-разному, так как орбиты их движения будут изменяться с различной скоростью. При этом сокращение размеров орбиты происходит главным образом за счет понижения высоты апогея.

Первый спутник и его ракета-носитель двигались первоначально примерно по одной и той же орбите, период их обращения отличался незначительно и составлял около 96,2 минуты. В настоящее время вследствие того, что степень торможения первого спутника меньше, чем у ракеты-носителя, их орбиты существенно различаются. Высота апогея ракеты-носителя ниже апогея спутника более чем на 100 километров. Период обращения ракеты-носителя, по данным на 10 ноября, был меньше периода обращения первого спутника примерно на 74 секунды.

Величина торможения как ракеты-носителя, так и спутника меняется с течением времени за счет изменения параметров орбиты. По мере понижения орбиты торможение прогрессивно возрастает. Это обстоятельство отчетливо подтверждается результатами наблюдений. При понижении орбиты до высот порядка 100 километров торможение будет настолько значительным, что будет происходить интенсивный разогрев спутника и ракеты-носителя, их дальнейшее быстрое снижение и сгорание.

Время существования спутника зависит от величины его торможения в атмосфере. Ясно, что чем больше период обращения и чем меньше торможение, тем больше будет время существования спутника. Расчеты, проведенные на основе данных, полученных из наблюдений за первым спутником и ракетой-носителем, позволяют предполагать, что время существования спутника должно быть порядка трех месяцев, считая с момента запуска. Это означает, что первый спутник будет существовать на орбите, по-видимому, до конца 1957 года. Время существования ракеты-носителя меньше, чем у первого спутника. Поэтому следует ожидать, что ракета-носитель сгорит раньше спутника. Большой период обращения второго спутника и малое значение величины торможения, меньшее, чем для первого спутника, позволяет утверждать, что время движения по орбите второго спутника будет заметно превышать время движения первого спутника.

Проводящаяся в настоящее время обработка результатов траекторных измерений позволит установить полностью весь процесс эволюции параметров орбит спутников и получить важные сведения о распределении плотности верхних слоев атмосферы. В дальнейшем можно будет давать надежные прогнозы о времени существования искусственных спутников Земли.


Наблюдения за искусственными спутниками земли

В оптических наблюдениях за движением двух первых спутников Земли и ракеты-носителя первого спутника систематически участвуют 66 специальных станций оптического наблюдения, все астрономические обсерватории Советского Союза, около 30 зарубежных обсерваторий. В настоящее время организуется сеть станций оптического наблюдения в странах народной демократии. Число зарубежных астрономических обсерваторий, участвующих в систематических наблюдениях искусственных спутников, с каждым днем увеличивается. Большая яркость ракеты-носителя и второго спутника позволила привлечь к визуальным наблюдениям также и аэрологические пункты Гидрометслужбы, имеющие шаропилотные теодолиты.

В результате оптических наблюдений выяснилось, что ракета-носитель меняет свой блеск. Это связано с изменением ее ориентировки в пространстве. Наиболее короткий зарегистрированный визуально период изменения блеска составляет примерно 20 секунд.

Наряду с визуальными производятся фотографические наблюдения ракеты-носителя и второго спутника. Снимки, полученные в Пулковской обсерватории, в обсерватории Астрофизического института АН Казахской ССР, в обсерватории Харьковского государственного университета и в других астрономических учреждениях Советского Союза, равно как и фотографии, произведенные в обсерватории «Пурпурная гора» (Китайская Народная Республика), Эдинбургской обсерватории (Великобритания), обсерватории Дансинк (Эйре), Потсдамской обсерватории (ГДР) и др., позволили существенно уточнить орбиты спутников и ракеты-носителя.

Весьма обширный материал дают радионаблюдения за искусственными спутниками Земли. Эти наблюдения проводились пунктами, расположенными на различных географических широтах и долготах радиопеленгаторными станциями, клубами ДОСААФ, рядом высших учебных заведений и тысячами радиолюбителей. Полученный материал настолько обширен, что в настоящее время выполнена лишь предварительная его обработка.

Очень важное значение имеют измерения напряженности поля принимаемых со спутника радиосигналов. Такие измерения осуществлялись как путем непрерывной автоматической записи, так и путем частных замеров в отдельные фиксированные моменты времени. Результаты измерения напряженности поля радиосигналов позволяют оценить поглощение радиоволн в ионосфере, включая те ее области, которые лежат выше максимума ионизации основного ионосферного слоя F2, а поэтому недоступны обычным измерениям, ведущимся на поверхности Земли. Эти измерения позволяют также судить о возможных путях распространения радиоволн в ионосфере.

Результаты приема радиосигналов спутника и измерения их уровней показывают, что эти сигналы на волне 15 метров принимались на очень больших расстояниях, далеко превышающих расстояния прямой видимости. Эти расстояния достигают 10, 12 и даже 15 тысяч километров, а в отдельных случаях и более.

Особенный интерес представляет то обстоятельство, что спутник, совершая движения по эллиптической орбите, занимает различное положение относительно основного максимума электронной концентрации в земной атмосфере. При обработке материалов радионаблюдений учитывалось, находится ли спутник в данный момент времени выше или ниже истинной высоты максимума электронной концентрации слоя F2, полученной на основе высотночастотных характеристик ионосферы, снятых ионосферными станциями. Если в Южном полушарии спутник движется выше слоя ионосферы, то в Северном полушарии он в некоторые моменты находится выше максимума ионизации этого слоя, в некоторые моменты — ниже его, а в иные моменты — вблизи этого максимума. Такие условия создают большое разнообразие в путях распространения коротких радиоволн на большие расстояния. Одним из таких путей является отражение от земной поверхности радиоволн, прошедших сверху через всю толщу ионосферы, с последующим однократным отражением от ионосферы в тех ее областях, где критические частоты имеют достаточно большие значения. В других случаях радиоволны, падающие сверху под некоторым углом на ионосферу, испытывают в ней значительное преломление и проникают вследствие этого в область, лежащую за пределами геометрической прямой видимости.

Положение спутника вблизи области максимальной ионизации атмосферы создает особенно благоприятные условия для распространения радиоволн путем ионосферных радиоволноводов. В некоторых случаях, как показывают наблюдения, радиоволны приходили в точку приема не по кратчайшему расстоянию, а путем обхода земного шара по более длинной дуге большого круга. В отдельных случаях наблюдалось явление кругосветного эха радиосигналов. В некоторых случаях измеренные значения напряженности поля оказывались больше, чем рассчитанные по закону обратной пропорциональности первой степени расстояния, что также говорит о наличии волноводных каналов в ионосфере.

Интересные результаты получены по наблюдению эффекта Допплера при помощи записи на магнитную ленту изменения тона биений между частотой радиоволн, излучаемых спутником, и частотой колебаний местного гетеродина. Таких записей получено огромное количество, и результаты их обрабатываются.

Несомненно, что окончательная обработка полученных в большом количестве материалов радионаблюдений за искусственными спутниками Земли даст очень ценные сведения об особенностях ионизации верхних областей ионосферы, а также о поглощении и характере распространения в них радиоволн.


Устройство второго спутника

Как указано выше, второй советский искусственный спутник Земли, в отличие от первого спутника, представляет собой последнюю ступень ракеты, на которой размещена вся научная и измерительная аппаратура. Такое размещение аппаратуры существенно упростило задачу определения координат спутника при помощи оптических средств наблюдения, поскольку, как показал опыт первого спутника, наблюдения за ракетой-носителем оказались значительно более простыми, чем за самим спутником. Яркость ракеты-носителя превосходит яркость первого спутника на несколько звездных величин. Общий вес аппаратуры, подопытного животного и источников электропитания на втором искусственном спутнике составляет 508 килограммов 300 граммов.

Рис. 79.