ематике.
Впрочем, им стоило понимать, что их возможности были не безграничны. Геометрия плоских треугольников, подходящая для средиземноморских портуланов, не работала в более долгих путешествиях. Поскольку Земля имеет (приблизительно) сферическую форму, ее поверхность изгибается и треугольники меняются. Чтобы понять, как именно это происходит, прочертите на шкурке апельсина три прямые линии, формирующие треугольник, а затем почистите апельсин. Треугольник получился не совсем ровным, ведь так? Его стороны выгнулись, а если вычислить сумму трех его углов, она окажется больше 180°, характерных для плоского треугольника. Следовательно, если вы будете двигаться по океану, придерживаясь одного направления по компасу, на поверхности Земли ваш маршрут окажется вовсе не прямой линией. Вы будете перемещаться по так называемой локсодромии: спирали, которая закручивается вокруг земного шара, неизменно пересекая идущие с севера на юг меридианы под одинаковым углом.
Придерживаясь одного направления по компасу, вы будете огибать земной шар по локсодромии
Это значит, что даже если мне известно направление по компасу на Бристоль в Англии из Нью-Йорка в США, это не самый короткий морской путь от одного города к другому. Мне нужно выбрать кратчайшее расстояние между точками на сфере: окружности, на которой лежат обе точки и центр которой находится в центре земного шара. В навигации по поверхности Земли ее называют “большим кругом”.
Теперь представьте, что мы планируем пройти по большому кругу от Нью-Йорка до Бристоля и запасаемся провиантом для этого плавания[47]. Чтобы определить, какое расстояние нам необходимо преодолеть, нам нужно представить сферический треугольник, в одном из углов которого находится Нью-Йорк, во втором – Бристоль, а в третьем – Северный полюс. Если нам известно, на какой широте находятся Нью-Йорк и Бристоль (то есть насколько они выше или ниже экватора), мы можем вычислить расстояние между ними с помощью стандартной тригонометрии. Но это долгий и трудоемкий процесс. Для этого необходимо представить целый ряд треугольников, часть из которых будет торчать из центра Земли и выходить за пределы ее поверхности. Нам также придется произвести на этих треугольниках серию сложных тригонометрических расчетов, в каждом из которых можно допустить ошибку, что в итоге не доведет нас до добра. Но есть и другой вариант – отправиться в школу навигации, где преподаватели обучат нас полезным приемам.
Сферическая форма Земли – главная проблема картографии. Геометры давно поняли, что земной рельеф невозможно прямо перенести на плоскую поверхность, такую как карта, не столкнувшись с различного рода искажениями. Многие тысячи лет картографы искали способ “проецировать” сферическую поверхность таким образом, чтобы минимизировать расхождения карт с реальностью. При проецировании над широтой и долготой производятся математические операции, чтобы при изображении рельефа на плоской поверхности углы и расстояния между различными точками обретали смысл. Эта математика подразумевает комбинацию геометрии сфер и тригонометрии (а ныне еще и математического анализа, к которому мы обратимся через пару глав).
Создание первой из известных нам картографических проекций приписывается Агатодемону Александрийскому, который (как считается) жил во II веке нашей эры. Древнегреческий математик Птолемей, живший в Александрии примерно тогда же, опубликовал составленную в этой проекции карту в своей книге “География”. Это проекция с линиями широт и долгот, которая в свое время была революционной, но прочерченные Агатодемоном параллели изогнуты, а меридианы не параллельны и расходятся лучами из самой северной точки.
Примерно в ту же эпоху картограф Марин Тирский предложил “равнопромежуточную проекцию” для составления карт местности. В этой проекции на плоскость широты пролегают горизонтально, а долготы – вертикально, и расстояния между всеми линиями равны. Этого – с небольшими изменениями и дополнениями – оказалось достаточно, чтобы мореплаватели более тысячи лет не испытывали проблем с навигацией.
Христофор Колумб тоже был картографом и славился составлением исключительно точных карт в своих плаваниях. К концу XV века испанский и португальский королевские дворы поняли, что того, кто сможет беспрепятственно плавать в Ост-Индию или в Америку, ждет огромное богатство. Для этого необходимо было создать такие геометрические построения, которые позволили бы картографам давать мореплавателям четкие инструкции. В дневнике Колумба от 1492 года, адресованном его покровителям, выражено его намерение осуществить нечто грандиозное:
Я решил <…> составить новую морскую карту, на которой на надлежащих местах были бы показаны под их ветром все моря и земли моря-океана, и еще завести книгу и в ней помещать все подобным же образом в рисунках с пометками экваториальной широты и западной долготы. И настолько обременил я себя всем этим, что позабыл о сне; и многое испытал я в плаванье, выполняя предначертанное, и совершение всего потребовало великих трудов[48].
Однако в силу принципов сферической геометрии никакая плоская двумерная карта сферы не может быть совершенной. Возьмем, к примеру, карту мира, которая, наверное, знакома вам лучше всего: в ее основе лежит проекция Герарда Меркатора. Она появилась в 1569 году и получила широчайшее распространение, поскольку была очень удобна для моряков. Руководствуясь своим подходом к сферической тригонометрии, Меркатор на своей карте сохранил углы между двумя любыми точками точно такими же, как на сферической поверхности Земли, благодаря чему компасный азимут по карте стал совпадать с компасным азимутом при прокладке курса корабля. Не обошлось и без недостатков: континентальные массивы – а следовательно, и расстояния – далеко от экватора оказались существенно увеличены. Мир на самом деле не совсем такой, как на проекции Меркатора: так, Аляска на деле в пять раз меньше Бразилии, но у Меркатора их размеры кажутся примерно одинаковыми. Гренландия у него сравнима по размерам с Африкой, хотя Африка на самом деле в 14 раз больше. Но разве это важно, когда вы просто плаваете по морям и океанам, не заходя слишком далеко на север и на юг?
Проекция Меркатора. Strebe, CC BY-SA 3.0, via Wikimedia Commons
Сегодня карты, конечно, выглядят совсем иначе. Они стали “динамическими”: их характеристики можно менять в зависимости от собственных нужд, как с GPS-картами в телефоне. Их польза в том, что корректность отображения мира на них может меняться на усмотрение пользователя. С точки зрения математики это весьма непросто: лучшие ученые NASA не один десяток лет не могли понять, какие математические хитрости нужно применить, чтобы этого добиться.
В конце концов с задачей справился Джон Парр Снайдер. Возможно, вы слышали прежде о Птолемее и Меркаторе, но я сильно удивлюсь, если вам знакомо имя Снайдера. И это печально, ведь, как отметили в The New York Times, он “вполне мог бы тягаться с любым другим великим картографом прошлого, включая Герарда Меркатора”[49]. Несомненно, было бы непросто найти человека, который оказал бы более непосредственное влияние на вашу жизнь благодаря своим способностям к геометрии.
Снайдер был настоящим чудаком – в лучшем смысле этого слова. В 1942 году, когда ему было всего шестнадцать, он завел первую записную книжку и стал собирать интересные факты из сфер географии, астрономии и математики[50]. Среди многого другого в его записях были сведения о треугольниках, а также мысли и догадки о геометрии плоских поверхностей и твердых тел. Эти размышления быстро пробудили в нем интерес к картографическим проекциям. Снайдера восхищало, как с помощью математических уравнений точки с поверхности земного шара преобразуются в точки на плоской поверхности и как математика влияет на геометрические взаимосвязи между ними. Однако он никогда не изучал этот предмет. В университете он специализировался на химической инженерии, которая сначала и стала его профессией. Лишь несколько десятилетий спустя, в 1970-х годах, он профессионально занялся картографией.
В 1972 году NASA запустило Landsat 1 – первый спутник, созданный для изучения географии Земли. Посвященным было понятно, что с помощью этого спутника можно будет составить принципиально новую карту мира, и два года спустя руководитель картографического отдела Геологической службы США (USGS) опубликовал статью с описанием подходящей математической проекции. Олден Колвокорессис – для друзей просто Колво – представил карту, которая учитывала бы перемещения сканера спутника, орбиту спутника, вращение Земли и изменение угла наклона оси этого вращения в ходе 26-тысячелетнего цикла “прецессии”. Чтобы избежать искажений, нужно было сделать карту в форме цилиндра, поверхность которого колебалась бы вдоль его длинной оси. Таким образом не возникало бы никаких катастрофических искажений при перенесении данных со спутника на карту. Эта идея казалась очень смелой. Вот только ни в NASA, ни в USGS не нашлось ни одного человека, способного провести необходимый геометрический анализ, чтобы сконструировать требуемую проекцию.
Снайдер услышал об этой проблеме в 1976 году, когда жена вручила ему на день рождения подарок для настоящего умника: билет на картографическую конференцию “Меняющийся мир геодезической науки”, которая проходила в Колумбусе (штат Огайо). Колво выступил там и описал трудности, с которыми столкнулся. Снайдер заинтересовался. На протяжении пяти месяцев он ломал голову над этой задачей, превратив гостевую спальню в рабочий кабинет и не используя никаких технических средств помимо программируемого карманного калькулятора TI-56, выпущенного компанией Texas Instruments. USGS почти сразу предложила Снайдеру работу.
Проекция Снайдера называется космической косой проекцией Меркатора. По мнению одного специалиста, это “одна из самых сложных проекций, разработанных человеком”. Среди прочего она предполагает применение 82 уравнений к каждой единице информации. В результате получается проекция Меркатора, построенная с движущейся наблюдательной точки и допускающая лишь минимальное искажение при изображении области, находящейся прямо под спутником. Нам очень сложно понять, как именно работает эта система, но любопытно отметить, что статья Снайдера с описанием лежащих в ее основе идей пестрит синусами, косинусами и тангенсами. Прошло несколько тысяч лет с тех пор, как мы постигли свойства треугольника, а они по-прежнему служат нам верой и правдой.