Искусство большего. Как математика создала цивилизацию — страница 16 из 56

A, æquetur B quad. in Z,


а сегодня мы написали бы:


А3 + B2A = B2Z


Его запись, признаться, тоже не была простой, но для начала и это было неплохо. Любопытно, что он использовал знак плюса (и знак минуса в других формулах), но знака равенства еще не ставил. Знак равенства в 1557 году ввел в обиход валлийский математик Роберт Рекорд, который предложил его в книге с забавным названием “Оселок остроумия, являющийся второй частью арифметики и содержащий извлечение корней, коссическую практику с правилом составления уравнений, а также иррациональные числа”.

Раз уж мы коснулись вопроса об алгебраической записи, стоит отметить, что по сей день не угасают ожесточенные споры о том, как буква x стала символом неизвестной величины. По мнению историка культуры Терри Мура, дело в том, что в алгебре аль-Хорезми “неопределенная величина” называлась “шен”[68]. В испанском языке нет буквы “ш”, и потому при переводе его трудов испанцы взяли самую близкую к ней букву x, которая дает испанский звук ch. Но в других источниках утверждается, что x нам подарил Рене Декарт, который применил буквы с разных концов алфавита в своей книге “Геометрия”, опубликованной в 1637 году[69]. Он обозначил известные величины буквами a, b и c, а неизвестные – буквами x, y и z.

Если вас пугает алгебра со всеми ее загадочными символами, представьте, что перед вами способ представить геометрические фигуры в текстовой форме.

Продумывая структуру своей книги, я провел искусственную черту между алгеброй и геометрией. Хотя обычно мы изучаем эти науки по отдельности – в основном потому, что так проще составлять учебный план, – алгебра естественным образом вытекает из геометрии. Это, в сущности, и есть геометрия, которая отказывается от картинок, тем самым позволяя математике освободиться от оков и расцвести. Чтобы понять, как это происходит, давайте вернемся – в очередной раз – к древней практике налогообложения.

Как мы видели в главе о геометрии, налоги часто рассчитывались в зависимости от площади полей – вавилонское слово eqlum, “площадь”, изначально и значило “поле”[70]. Неудивительно, что вавилонским чиновникам приходилось решать задачи наподобие вот этой, записанной на глиняной табличке YBC 6967 из Вавилонской коллекции Йельского университета:


Площадь прямоугольника равна 60, а его длина больше ширины на 7. Какова его ширина?


Попробуем решить эту задачу. Если взять ширину за x, то длина – это x + 7. Площадь прямоугольника равна произведению его длины и ширины, а значит, задается следующим равенством:


A = x (x + 7)


Скобки здесь показывают, что каждое из слагаемых внутри них нужно умножить на величину, стоящую снаружи, и тогда получится:


A = x2 + 7x


Вавилоняне решали такие уравнения, производя последовательность действий, показывающих тесную связь между алгеброй и геометрией. Этот процесс называется “достраиванием квадрата”.


Вавилонский метод “достраивания квадрата” для решения квадратных уравнений


Чтобы решить уравнение вида x2 + bx, сначала нужно было зарисовать его в виде геометрических фигур. x2 – это квадрат со стороной x. bx – прямоугольник с длиной x и шириной b. Поделите этот прямоугольник надвое по длинной стороне и переместите одну половину в нижнюю часть квадрата, и у вас почти получится квадрат побольше. Чтобы достроить его, нужно просто добавить маленький квадратик со стороной b/2. Площадь этого квадратика – (b/2)2. Получается, что изначальное уравнение эквивалентно равенству (x + b/2)2 – (b/2)2.

Сталкиваясь с уравнением вида


x2 + bx = c


вавилоняне подставляли в него результат достраивания квадрата и получали:



Далее они работали с этим равенством и приводили его к формуле (хотя и не записывали формулу в современном представлении):



Ответ: ширина равняется 5, а длина – 12. Но приглядитесь – разве эта формула вам не знакома? Если я чуть изменю изначальное равенство, чтобы получилось


ax2 + bx + c = 0,


то вы сможете решить его по формуле, усвоенной в школе, – формуле для решения квадратного уравнения:



Как видите, когда-то в школе вы узнали не что иное, как метод расчета налогов, которому уже 5000 лет. Впрочем, никто из нас не стал вавилонским сборщиком податей, так зачем же школьникам сегодня решать квадратные уравнения? Это справедливый вопрос, и спорят об этом даже сами учителя математики.

Кривые космоса

На отраслевой конференции, состоявшейся в 2003 году, заслуженный британский учитель математики Терри Блейден высказал мнение, что с квадратными уравнениями лучше знакомить только тех учеников, которым действительно нравится математика[71]. Он отметил, что большинству молодых людей для жизни вполне достаточно и базовой математической грамотности. Других учителей математики настолько возмутило его предложение, что один из них даже ответил ему с политической арены. Тони Макуолтер не один десяток лет преподавал математику, а затем был избран в парламент. “Квадратное уравнение, – заявил он в палате общин, – это не темная комната без мебели, где человеку приходится сидеть на корточках. Это дверь в комнату, полную беспрецедентных достижений человеческого разума. Если не войти в эту дверь – или если сказать, что за ней не найдется ничего интересного, – можно навсегда лишиться доступа к значительной части того, что мы привыкли считать человеческой мудростью”[72].

Правда ли это? Даже если квадратные уравнения и кажутся людям сложными, это не мешает им ценить человеческие знания и мудрость; в конце концов, мало кто из нас решал квадратные уравнения хоть раз после того, как сдал выпускной экзамен. Но людям, не связавшим свою жизнь с математикой, я все равно могу предельно честно сказать: освоив алгебру, вы развили свою способность к абстрактному мышлению и научились уделять внимание тому, о чем ваш мозг предпочел бы не думать. Тысячелетний опыт и ряд любопытных современных исследований показывают нам, что (как и в случае с геометрией) работа с абстрактными переменными и числовыми связями между ними действительно благотворно сказывается на нашем мышлении[73]. Алгебра делает человека изобретательным, плодовитым и усидчивым, прививает ему способность нестандартно мыслить и доводить логические рассуждения до конца. Хороший пример – немецкий физик Георг Кристоф Лихтенберг.

В 1786 году Лихтенберг написал своему другу Иоганну Бекману довольно непритязательное письмо[74]. “Однажды я предложил молодому англичанину, которого учил алгебре, одно упражнение”, – написал Лихтенберг. По условиям задачи нужно было “найти лист бумаги, для которого все книжные форматы – ин-фолио, ин-кварто, ин-октаво, секстодецимо – были бы подобны друг другу”.

Это напоминает работу с подобными треугольниками, только здесь предметом исследования становятся прямоугольники. Лихтенберг хочет узнать, как найти такое соотношение длины и ширины листа бумаги, которое позволяет уменьшить самый крупный формат, “ин-фолио”, вдвое и получить формат “ин-кварто”, затем уменьшить его вдвое до “ин-октаво” и так далее. Ответ ученика показался Лихтенбергу весьма любопытным, и он сравнил полученные размеры с форматом бумаги, лежащей в ящике его письменного стола. “Установив это отношение, я решил применить его к листу бумаги, воспользовавшись ножницами, – рассказывал он Бекману, – но с радостью обнаружил, что формат уже соответствует искомому. На такой бумаге я и пишу это письмо”.

И здесь он перешел к делу. Лихтенберг поинтересовался, не знаком ли Бекман с кем-нибудь из производителей бумаги, – ему хотелось узнать, как именно они пришли к использованию такого формата, ведь это, по его словам, “вряд ли стало случайностью”. Может, кто-то в бумажной промышленности уже произвел алгебраические расчеты?

Нам это не известно. Но письмо Лихтенберга, в котором описывается простое алгебраическое упражнение и неожиданное открытие того, что математическое решение, возможно, появилось естественным образом, легло в основу европейского стандарта форматов бумаги. В 1911 году лауреат Нобелевской премии по химии Вильгельм Оствальд призвал к использованию соотношения Лихтенберга в качестве международного стандарта в производстве бумаги[75]. В 1921 году такой стандарт был принят в Германии и быстро распространился по Европе. В 1975 году его утвердили в качестве официального формата документов ООН. Вероятно, вам он известен как серия форматов “А”. Наверняка вы даже сегодня держали в руках листок формата А4, если только живете не в Северной Америке, которая так никогда и не ощутила необходимости перейти на соотношение Лихтенберга. Это соотношение – бесценный ресурс для всех, кому нужно сохранять пропорции, что при увеличении плаката, что при уменьшении чертежа бумажного самолетика.

Задача Лихтенберга о размерах бумаги прекрасно сформулирована на языке риторической алгебры. Ее решение мы уже встречали раньше: длина и ширина относятся друг к другу как 2 к 1. Площадь листа формата А0 составляет 1 м2, а значит, его стороны равны 1,189 м и 0,841 м. Поверните его вертикально и разрежьте пополам по ширине, и у вас получатся два листа формата А1, длина каждого из которых равна ширине листа А0, а ширина – половине длины А0. Повторите операцию с каждым из листов – и получите четыре листа формата А2. У всех листов будет одинаковое соотношение длины и ширины. Разрежьте А2 пополам по ширине и получите… впрочем, вы уже догадались.