. Так, он отмечает, что если вам известно количество пороха, необходимое для оружия, которое вдвое меньше вашего, то нельзя просто увеличить количество пороха вдвое, чтобы получить достаточный уже вам объем. Нужно произвести расчеты на основе “чисел, полученных при кубическом умножении”, поскольку “правило пропорции здесь просто не работает”. Иными словами, если ружье вдвое больше, вам потребуется в 23 (то есть в 8) раз больше пороха, а не в 2 раза больше. Диггес также задает следующий вопрос о распределении вооружения:
В распоряжении у сержанта-майора 60 знамен, у каждого знамени по 160 копейщиков и пехота с оружием ближнего боя. Генералы хотят, чтобы он сформировал одну большую роту и окружил ее семью шеренгами копейщиков. Сколько копейщиков и сколько алебардистов ему понадобится, чтобы сформировать наибольшую роту, и сколько шеренг должно быть в войске?
По тем временам этот вопрос был насущным: командующим нужно было понимать, как лучше всего распределять оружие между различными подразделениями пехоты, чтобы максимизировать их эффективность, при этом защищая пехотинцев от кавалерийских атак противника. На том этапе истории битвы в основном велись подразделениями, выстроенными в геометрические формации. Правильное построение было вопросом жизни и смерти для солдат, и часто от него зависели успехи государства. Чтобы решить задачу Диггеса, нужно прибегнуть к алгебраическому поиску неизвестной величины. Ответ на первый вопрос: 2520 копейщиков.
Примерно тогда же, когда Тарталья работал над алгеброй пушечного огня, математику превращали в оружие и совершенно другим способом. В те годы алгеброй владели немногие, и этот навык производил немалое впечатление, а потому с помощью него один математик мог доказать свое превосходство над другим и даже отнять у него работу. Серьезные последствия таких математических дуэлей – потерпев поражение, математик вполне мог умереть с голоду, – ускорили дарвиновскую эволюцию новых алгебраических методов. В математике тогда выживал действительно сильнейший, но выжившим следовало соблюдать осторожность, и профессиональные математики тщательно отбирали учеников, которым передавали тайные алгебраические знания. Им вовсе не хотелось, чтобы какой-нибудь ученик раскрыл их секреты конкурентам или вступил в противостояние с учителем, надеясь занять его место. В результате математика распространялась медленно, а недоверие между математиками росло. Мы редко связываем математику с замалчиванием, ревностью и паранойей, но в истории о том, как мы пришли от квадратных уравнений к кубическим (x3) и уравнениям четвертой степени (x4), все это есть.
Наш рассказ начинается со знакомого имени – Лука Пачоли. В книге “Сумма арифметики”, опубликованной в 1494 году, Пачоли заявил, что, хотя существует общая формула для решения квадратных уравнений (квадратичная формула, которую мы разбирали ранее в этой главе), представляется невозможным вывести общую формулу для решения кубических уравнений, где x возведен в третью степень. Иными словами, для уравнений следующего вида[79]:
ax3 + bx2 + cx + d = 0
Заявление Пачоли было интересно исключительно в интеллектуальном плане, поскольку применения кубическим уравнениям пока не находилось. Тем не менее болонский математик Сципион дель Ферро, однажды выступивший соавтором Пачоли, взялся за эту задачу. Он нашел способ решить родственное кубическое уравнение, где b равняется нулю, в результате чего получается уравнение “пониженной степени” без x2:
ax3 + cx + d = 0
Как и любой здравомыслящий математик того времени, дель Ферро ни с кем не поделился своим решением. Пока не оказался при смерти. Поняв, что ему осталось недолго, он послал за своим учеником Антонио Фиоре и зятем Аннибалом делла Наве, которым и раскрыл секрет.
Поверенные дель Ферро оказались совсем разными людьми. Его зять осознал, какая честь ему оказана, и никому не рассказал, что у него есть доступ к ценному математическому знанию. Фиоре, напротив, был алчен и амбициозен. Он счел решение кубического уравнения пониженной степени смертоносным оружием. И решил, что первой своей жертвой сделает Никколо Тарталью.
В 1535 году, когда Фиоре устроил состязание, Заика жил в Венеции и преподавал теоремы Евклида. Фиоре мечтал занять его место и по правилам вызвал Тарталью на математическую дуэль. Они предложили друг другу по 30 задач. Все задачи Фиоре были вариациями математических решений кубического уравнения пониженной степени. Тарталья сразу понял, что у Фиоре, очевидно, есть формула, а значит, сохранить работу он сможет только в том случае, если найдет решение сам. Будучи талантливым математиком, он справился с задачей. 12 февраля Тарталья нашел способ решить кубическое уравнение пониженной степени x3 + px = q. На следующий день он понял, как решить уравнение вида x3 = px + q. Вскоре после этого он сумел решить уравнение x3 + q = px. Тарталья справился со всеми кубическими уравнениями пониженной степени, предложенными Фиоре. Фиоре, однако, задачи Тартальи оказались не по плечу. Поединок закончился триумфом Тартальи, который сохранил работу и еще сильнее укрепил свою репутацию, публично отказавшись от 30 изобильных пиров, положенных победителю. Как поверженный Румпельштильцхен, униженный Фиоре исчез из публичной сферы.
И все же Тарталью не ждал счастливый конец. Когда состоялась его дуэль с Фиоре, прославленный миланский математик Джероламо Кардано занимался грандиозным проектом: писал книгу, в которой подробно излагал алгебраические знания своей эпохи[80]. Кардано услышал о том, что Тарталья принял участие в состязании по решению кубического уравнения пониженной степени, и попросил его предоставить решение для книги. Понимая ценность этого знания, Тарталья ответил отказом. Кардано повторил свою просьбу и пообещал опубликовать решение Тартальи, обозначив авторство. Тарталья не согласился и на этот раз. Тогда Кардано предложил познакомить Тарталью с генералами, которые готовы щедро заплатить за его знания в области математики артиллерии. Тарталья не уступал. В конце концов Кардано сделал странное предложение: если Тарталья сообщит ему решение – как математик математику, – он будет ему благодарен, но публиковать его в книге не станет. Непонятно почему, но Тарталья на это согласился.
Получив решение Тартальи, Кардано и его ученик Лодовико Феррари взялись за полноценное кубическое уравнение. Они решили его – и пошли еще дальше. Отталкиваясь от новаторского метода Тартальи, Феррари решил и уравнение четвертой степени, куда добавляется x4. Как и в случае с кубическим уравнением, практического применения для уравнения четвертой степени не было, но Кардано включил все решения в свою рукопись. Впрочем, опубликовать он ничего не мог, потому что в основе всех выкладок лежало решение Тартальи, которое он поклялся не обнародовать.
Выход из положения нашел школьный учитель из Брешии Дзуан да Кои. Он был знаком с Тартальей и слышал, что Сципион дель Ферро передал свое решение кубического уравнения своему зятю и Фиоре. Да Кои предложил Кардано и Феррари навестить зятя дель Ферро. Они последовали его совету – и узнали тайну, в которую был посвящен Фиоре и которую Тарталья раскрыл самостоятельно. Хотя ученые и сегодня спорят об этичности его поступка, Кардано опубликовал свою книгу, убедив себя, что с формальной точки зрения не нарушает клятву, данную Тарталье.
Тарталья разозлился, узнав, что теперь его добытое тяжким трудом (и невероятно ценное) решение кубического уравнения пониженной степени доступно любому, кто купит книгу Кардано. Они с Кардано обменялись несколькими открытыми письмами, и тон Тартальи с каждым последующим из них становился все более ядовитым. Оскорбленный ученый требовал восстановления справедливости на математической дуэли. Кардано, у которого на карту было поставлено больше, отказался участвовать в поединке. Затем в родном городе Тартальи, Брешии, открылась заманчивая вакансия. Заика подал прошение о принятии на должность, и его одобрили на одном условии: он должен был сразиться на публичной дуэли с учеником Кардано Лодовико Феррари.
Феррари рвался в бой с человеком, который не раз порочил репутацию его любимого учителя. Противники обменялись задачами и сошлись в поединке на глазах у любопытствующей толпы в саду братьев Дзокколанти в Милане 10 августа 1548 года. К несчастью для Тартальи, Феррари лучше него разбирался в решениях уравнений третьей и четвертой степени и использовал их при составлении задач, чтобы разгромить соперника. Он задавал такие вопросы:
Есть куб, сумма ребер и граней которого равна пропорциональному отношению этого куба к одной из его граней. Каков размер куба?
и еще:
Найдите два таких числа, которые при сложении дают столько же, сколько куб меньшего из них, прибавленный к произведению утроенного меньшего числа и квадрата большего числа, а сумма куба большего числа и утроенного квадрата меньшего в 64 раза больше суммы этих чисел.
и еще:
Есть прямоугольный треугольник, в котором построена высота, и сумма одной из сторон с противоположной частью основания дает 30, а сумма другой стороны с другой частью основания дает 28. Какова длина одной из сторон?
Тарталья решил не все задачи. Он покинул Милан с позором. Он все равно получил должность в Брешии, но занимал ее лишь полтора года, после чего разочарованные работодатели перестали ему платить. Феррари, напротив, стал местной знаменитостью и сам занял теплое местечко: он стал старшим налоговым инспектором императора Священной Римской империи в Милане. Хотя практического применения такой алгебре по-прежнему не находилось, алгебраические навыки Феррари – которые он вполне мог больше и не применять – позволили ему разбогатеть и отойти от дел.