Искусство большего. Как математика создала цивилизацию — страница 38 из 56

ое: краткое описание того, как устроена Вселенная.

Этот фрагмент математики пока не изменил историю человечества. Работа с октонионами еще не завершена, и она, возможно, ни к чему нас не приведет. Но эти странные числа дразнят нас, а их свойства отражают наши представления о поведении сил и частиц, которые встречаются в природе, и этого достаточно, чтобы некоторые физики отправились за ними вниз по кроличьей норе.

Мы уже упоминали о некоторых странных свойствах квантовой теории. Когда мы описываем поведение различных субатомных частиц, некоторая странность в получающейся математике отражает свойства кватернионов. Рассмотрим принцип неопределенности Гейзенберга. Он гласит, что нельзя одновременно точно знать определенные пары характеристик частицы – например, ее координаты и импульс. Это следствие того, что в квантовой математике порядок вещей имеет значение, как и при работе с кватернионами i, j и k.

Неразрешимая странность квантовой теории оттолкнула от нее и Эйнштейна, и Шрёдингера. Они вместе искали ее недостатки и пытались убедить остальных – в частности, Нильса Бора, который часто считается отцом-основателем квантовой теории, – что лучше начать все с начала. В 1939 году Эйнштейн прочел лекцию, на которой присутствовал Бор. Глядя ему прямо в глаза, Эйнштейн заявил, что теперь его цель состоит в том, чтобы сместить с позиций квантовую механику[162].

Шрёдингер также не стал дальше развивать квантовую теорию и отошел от нее примерно тогда же, когда и Эйнштейн. Оба ученых – независимо друг от друга – занялись разработкой теории, которая объединила бы квантовую физику с теорией относительности. Им хотелось создать грандиозную финальную теорию, которая включала бы в себя и описание космических свойств Вселенной из теории относительности, и объяснение субатомного мира и действующих в нем сил из квантовой теории. Так появилось бы единое математическое описание всего космоса. Ни один из двух ученых не преуспел в этом начинании, и они сильно разругались, публично критикуя труды друг друга[163]. После одного особенно колкого замечания о проблемах в рассуждениях Эйнштейна, сделанного Шрёдингером на пресс-конференции, Эйнштейн наказал бывшего друга и три мучительных (по крайней мере, для Шрёдингера) года не отвечал на его письма.

Теперь эстафету перехватили другие, но никто пока не заявил о близости к цели: математики и физики, а также все, кто работает в плодородных областях на стыке этих наук, по-прежнему исследуют различные пути. Любопытно – особенно в контексте этой главы, – что сегодня оптимизм в ученых вселяет в основном как раз математика комплексных чисел, в частности октонионов.

Все началось с теории струн. Это попытка построить все частицы и силы физики, начав с довольно простой вещи – вибрирующих струн энергии. Струны вибрируют определенным образом – и мы получаем электрон. Вибрация другого типа дает нам электромагнитную силу. Идея о том, что математика музыки переплетена с математикой космоса, весьма заманчива: пифагорейцам она бы точно понравилась.

Но такой подход работает, только если мы допускаем существование “дополнительных” пространственных измерений (отличных от тех, что предложил Луи де Бройль). Согласно теории струн, к трем измерениям, в которых мы живем, нужно добавить еще семь скрытых. В этой схеме свойства вещества взаимодействуют друг с другом такими способами, которые математически описываются с помощью октонионов. Хотя теория струн вряд ли станет итогом наших размышлений, на текущий момент она, пожалуй, представляет собой лучшую из имеющихся у нас вариаций описания “квантовой теории гравитации” и подсказывает нам, что в финальной теории, какой бы она ни оказалась, вполне может фигурировать математика октонионов.

Эти подсказки проистекают из того, как специалисты по физике частиц собирают свой “зоопарк”. Стандартная модель – это нечто вроде зоологической классификации, которая позволяет распределять частицы по классам на основании сходства их характеристик. Так, в класс адронов входят кварки, с которыми мы встречались в главе об алгебре. Адроны обладают электрическим зарядом, кратным заряду электрона (при этом множителем может быть и ноль). Вероятно, вы слышали о протонах и нейтронах, составляющих ядро атома. Это адроны. Существует и множество других классов, включая лептоны (к ним относятся электроны) и бозоны (например, бозон Хиггса).

Из-за различных классификаций, характеристик и особенностей поведения этих частиц стандартная модель оказывается довольно запутанной. Нам сложно понять, как выводятся ее законы. Но есть основания предполагать, что запутанность возникает лишь потому, что мы пока не поняли, как модель соотносится со всеми тонкостями плоскости Фано и как в ней участвует гравитация. Лауреат Абелевской премии математик Майкл Атья отметил: “Настоящая теория, которую мы хотим вывести, должна сочетать гравитацию со всеми этими теориями так, чтобы гравитация казалась следствием октонионов… Это будет сложно, ведь мы знаем, что с октонионами не бывает легко, но такая теория, когда она будет обнаружена, окажется прекрасной и уникальной”[164].

Но пока, разумеется, это лишь гипотетическая возможность для применения комплексных чисел. Но есть и другая прекрасная теория, чрезвычайно практичная и применяемая уже более века. Ее подарил нам Чарльз Протеус Штейнмец, родившийся в Германии. И именно эта история показывает нам – возможно, нагляднее любой другой, – в каком долгу наша цивилизация перед математикой.

Электрификация Америки

В этой истории мы встретимся с некоторыми из известных эксцентриков. И с раздражительным, нелюдимым Томасом Эдисоном, которого порой называют изобретателем электрической лампочки и волшебником из Менло-Парк, района Нью-Джерси, где он открыл свою первую лабораторию. И с сумасбродным гением Николой Теслой, который, как считается, был одержим созданием умопомрачительных световых композиций с роскошными электрическими инсталляциями. И с глубоко религиозным Майклом Фарадеем, который родился в семье кузнеца и создал первый в мире электромотор. И с шотландским пионером электромагнитной теории Джеймсом Клерком Максвеллом, которого школьные друзья прозвали Недоумком из-за того, что он ходил в странных самодельных туфлях. И все же наш главный герой был самым эксцентричным из всех них.

Карл Август Рудольф Штейнмец родился в прусском городе Бреслау (ныне – Вроцлав, Польша) в 1865 году. От отца и деда он унаследовал кифоз – искривление позвоночника, при котором спина выгибается назад. Его рост составлял около 145 см, но из-за сгорбленной спины он казался гораздо ниже. Обладая исключительным умом, Штейнмец блистал в учебе. Однокурсники понимали, насколько он одарен, и щедро платили ему за частные уроки. Они прозвали Штейнмеца Протеусом в честь греческого бога Протея, способного принимать любые обличья и наделять мудростью того, кто к нему прикоснется. Когда Штейнмец примкнул к запрещенной социалистической группе, члены которой мечтали положить конец бедности, добиться равноправия для всех и освободиться от гнета правящих классов, он стал неугоден властям и бежал в Америку. Там 24-летний Карл превратился в Чарльза Протеуса Штейнмеца. Он оказался в Америке в 1889 году. И уже к концу 1893 года его гений изменил американский образ жизни.

В 1821 году Майкл Фарадей понял, как собрать электромотор. В его первом аппарате были задействованы чаша с ртутью, магнит, аккумулятор и жесткий провод. Когда электричество, идущее по проводу, вступало во взаимодействие с магнитным полем, провод начинал описывать круги вокруг магнита. Через несколько месяцев инженеры собрали на базе изобретения Фарадея устройство, в котором мы сегодня узнали бы классический электромотор. Через десять лет изобретатели перевернули процесс с ног на голову, чтобы при вращении провода вокруг магнита в нем вырабатывалось электричество. Уже к 1882 году у нас появились электрический телеграф, телефон, электрические маяки и электростанции. Но все еще не было надежного, эффективного способа доставлять электроэнергию в дома и на заводы.

Главная проблема заключалась в том, что слишком много электроэнергии терялось при ее транспортировке с электростанции. При транспортировке переменного тока, сила которого циклично меняется по плавной синусоиде от положительного значения к отрицательному, потери были меньше, но для Томаса Эдисона это представляло другую проблему. Эдисон немало вложил в постоянный ток, который дает стандартный аккумулятор. Он подключил семейную ферму к сети постоянного тока и оборудовал ее множеством работающих на нем выключателей и лампочек, и поэтому настаивал на его повсеместном использовании, утверждая, что небольшие генераторы постоянного тока можно установить в каждом здании, чтобы свести к минимуму потери электроэнергии при ее транспортировке. К несчастью для Эдисона, совет директоров его собственной компании Edison General Electric посчитал, что такое решение будет ошибкой.

Их главным конкурентом была инфраструктурная компания Westinghouse Electric, которая располагала немалыми ресурсами и планировала строить загородные электростанции, например гидроэлектростанцию на Ниагарском водопаде. В Westinghouse отдавали предпочтение переменному току – отчасти потому, что деятельный гений Никола Тесла уже спроектировал целую сеть переменного тока, способную питать целый город, а возможно, и целую страну. Упрямый Эдисон отчаянно сражался за постоянный ток, и его в конце концов исключили из совета директоров, а Edison General Electric превратилась в General Electric. И сделала ставку на переменный ток. Она стала скупать компании, обладающие нужным опытом, патентами и квалификациями. В одной из них работал Чарльз Протеус Штейнмец.

Штейнмец был к тому времени человеком уже весьма видным. Он изменил всю отрасль, сумев сократить энергопотери, возникающие при конвертации электротока разного напряжения. Но в тот год, когда он стал сотрудником GE, он потряс даже тех, кто и раньше восхищался им. Как? Взяв на вооружение комплексные числа.