Одно масштабное исследование, проведенное более чем на 4 миллионах шведов и шведок, в рамках которого связывались сведения о налогообложении и здоровье за 18 лет, установило, что у людей с более высоким социально-экономическим положением чаще диагностировали опухоль головного мозга. Это было одно из тех солидных, но весьма неинтересных исследований, которые обычно не привлекают особого внимания, поэтому специалист по связям с общественностью посчитал, что в пресс-релизе гораздо лучше написать так: «Высокий уровень образования связан с повышенным риском развития опухоли головного мозга», хотя работа посвящалась скорее социально-экономическому положению, чем образованию. Однако к тому времени, когда результаты были представлены широкой публике, помощник редактора одной из газет выдал классический заголовок: «Почему поступление в университет повышает риск развития опухоли мозга»[85].
Такой заголовок встревожил бы любого, кто имеет высшее академическое образование. Но стоит ли на самом деле беспокоиться? Исследование основывалось на всей доступной генеральной совокупности, а не на выборке, поэтому мы с уверенностью можем заключить, что у более образованных людей действительно немного чаще выявляли опухоль головного мозга. Но неужели интенсивные нагрузки в библиотеке действительно перегревали мозг и вели к неблагоприятным мутациям клеток? Несмотря на газетный заголовок, я в этом сомневаюсь. Как, собственно, и авторы статьи, которые добавили: «Потенциальным объяснением такого результата могут быть полнота регистрации рака и ошибка выявления». Другими словами, люди с более высоким уровнем образования с большей вероятностью пройдут обследование, а значит, опухоли будут регистрироваться чаще (пример того, что в эпидемиологии называется ошибкой обращаемости[86]).
Из главы 2 мы узнали, что коэффициент корреляции Пирсона показывает, насколько близко к прямой расположены точки на диаграмме рассеяния. Когда мы рассматривали английские больницы, проводившие в 1990-х операции на сердце у детей, и отображали на диаграмме точки, отражавшие число операций и уровень выживаемости, высокая корреляция демонстрировала, что более крупные больницы ассоциировались с более низким уровнем смертности. Однако мы не могли сделать вывод, что более крупные больницы и есть причина более низкой смертности.
У такого осторожного отношения солидная родословная. Когда в журнале Nature в 1900 году обсуждали предложенный Карлом Пирсоном коэффициент корреляции, один комментатор предупредил, что «корреляция не означает причинно-следственной связи». В течение следующего столетия эта фраза стала мантрой, постоянно повторяемой статистиками при столкновении с заявлениями, основанными на простом наблюдении, что какие-то две вещи имеют тенденцию изменяться вместе. Существует даже специальный сайт, который автоматически находит невероятные связи: например, очаровательную корреляцию 0,96 между ежегодным потреблением сыра моцарелла в США за 2000–2009 годы и количеством докторских степеней по гражданскому строительству, полученных за этот период[87].
Похоже, у людей есть глубокая внутренняя потребность объяснять происходящее в виде простейшей зависимости «причина → следствие». Уверен, что каждый из нас мог бы придумать увлекательную историю обо всех этих остепененных инженерах, поглощающих пиццу с сыром. Существует даже специальное слово для склонности конструировать связи между событиями, которые в реальности не связаны, – апофения, причем ее крайнее проявление – объяснять простую случайность или невезение злонамеренностью других и даже колдовством.
К сожалению (а, возможно, к счастью), мир несколько сложнее, чем колдовство. И первая сложность появляется при попытке понять, что подразумевается под «причиной».
Что такое причинность?
Причинность – это довольно спорный и активно обсуждаемый вопрос, что, вероятно, кажется удивительным, поскольку в реальной жизни все выглядит просто: мы что-то делаем, и это к чему-то приводит. Дверь машины зажала мой большой палец, и теперь он болит.
Но откуда мне знать, что большой палец не заболел бы в любом случае? Возможно, мы могли бы обратиться к тому, что называется контрфактуальным мышлением[88]. Если бы мой палец не зажало дверью, то он бы не болел. Но это всегда будет предположением, требующим переписывания истории, поскольку мы никогда точно не узнаем, что я мог бы почувствовать (хотя в данном случае я могу быть вполне уверен, что мой палец не заболит внезапно сам по себе).
Ситуация осложняется еще больше, когда мы начинаем учитывать неизбежную изменчивость, лежащую в основе событий в реальной жизни. Например, медицинское сообщество сейчас соглашается с тем, что курение вызывает рак легких, однако врачам потребовались десятилетия, чтобы прийти к такому заключению. Почему так долго? Потому что большинство курильщиков не заболевают раком легких, в то время как некоторые некурящие заболевают. Все, что мы можем сказать, – это то, что у вас выше риск заболеть раком легких, если вы курите, чем если не курите; и это одна из причин того, почему для принятия законов об ограничении курения понадобилось столько времени.
Таким образом, наша «статистическая» идея причинности не будет строго детерминистской. Когда мы говорим, что X обусловливает Y, мы не имеем в виду, что каждый раз, когда наступает X, наступает и Y. Мы всего лишь подразумеваем, что если вмешаемся и заставим X происходить чаще, то и Y будет случаться чаще. Соответственно, мы никогда не сможем сказать, что X вызывает Y в данном случае, а можем лишь утверждать, что X увеличивает долю случаев, когда происходит Y. Из этого вытекают два важнейших следствия относительно того, что нам нужно делать при намерении понять причинно-следственную связь. Во-первых, чтобы вывести причинно-следственную связь с полной уверенностью, в идеале нам нужно вмешаться и провести эксперименты. Во-вторых, поскольку мир статистический и стохастический, вмешаться нужно не один раз, чтобы собрать доказательства.
Все это естественным образом подводит нас к очень деликатной теме – проведению клинических испытаний на больших группах людей. Мало кому понравится идея экспериментов над собой, особенно если речь идет о жизни и смерти. Это тем более примечательно, что тысячи людей изъявляли желание участвовать в масштабных исследованиях, в которых ни они, ни врачи не знали, какое лечение в итоге будет применено.
Уменьшают ли статины риск инфарктов и инсультов?
Каждый день я принимаю маленькую белую таблетку – статин, потому что мне сказали, что он понижает уровень холестерина и тем самым уменьшает риск инфарктов и инсультов. Но как это сказывается на мне? Я почти уверен, что эти таблетки снижают уровень холестерина липопротеинов низкой плотности (ЛПНП)[89], поскольку мне сообщили, что он упал вскоре после того, как я начал их принимать. Снижение ЛПНП – непосредственный, по сути, детерминированный эффект, который, как я полагаю, вызван приемом статина.
Однако я никогда не узнаю, принесет ли мне этот ежедневный ритуал пользу в долгосрочной перспективе; все зависит от того, какой из многочисленных сценариев моей дальнейшей жизни будет на самом деле разыгран. Если инфаркта или инсульта у меня никогда не будет, то я так и не узнаю, в какой-то степени это результат приема таблеток, или их многолетнее глотание здесь ни при чем и просто оказалось напрасной тратой времени. Если инфаркт или инсульт все же случится, то я не узнаю, было ли это событие отложено благодаря приему статина. Все, что мне дано знать, – это то, что в среднем препарат приносит пользу большой группе похожих на меня людей и что это знание основано на масштабных клинических испытаниях.
Цель клинических испытаний – провести «правильный тест», который верно определяет причинность и оценивает средний эффект нового медицинского метода лечения, и при этом избежать ошибок, которые могли бы дать ложное представление о его эффективности.
Правильное клиническое исследование в идеале должно соответствовать следующим принципам:
1. Контроль. При намерении изучить влияние статинов на популяцию мы не можем просто дать их нескольким добровольцам, а затем, если инфаркта не будет, заявить, что его удалось избежать благодаря приему таблеток (несмотря на наличие сайтов, которые используют подобные смехотворные рассуждения для продвижения своей продукции). Нам нужна экспериментальная группа, которой будут давать статины, и контрольная группа, принимающая сахарные таблетки или плацебо.
2. Распределение при лечении. Важно сравнивать подобное с подобным, поэтому и лечение, и группы сравнения должны быть максимально похожи. Лучший способ этого добиться – случайно распределить участников по группам, а потом наблюдать, что с ними происходит. Такой метод называется рандомизированным контролируемым исследованием (РКИ). В тестировании статинов задействуется значительное количество людей, поэтому обе группы должны быть сходны по всем факторам, которые могли бы повлиять на результат, включая (что критически важно) те, о которых мы не знаем. Такие исследования могут быть весьма масштабными: в исследовании по защите сердца (HPS), проведенном в Великобритании в конце 1990-х годов, 20 536 человек с повышенным риском инфаркта или инсульта были случайным образом распределены на две группы: одним ежедневно давали 40 мг симвастатина, а другим – пустую таблетку[90].
3. Подсчет количества людей в обеих группах.