Электрическое поле коры начали измерять с середины 1920-х годов с помощью метода электроэнцефалографии. Кроме того, на данный момент уже на протяжении нескольких десятилетий с помощью метода магнитоэнцефалографии измеряют и магнитное поле мозга. Однако этот последний метод в основном ограничивается анализом коры, поскольку пока еще не созданы достаточно чувствительные методы исследований, которые позволили бы ученым проникнуть в более глубокие слои мозга.
Релятивистская теория мозга предполагает, что крайне сложные пространственно-временные нейронные электромагнитные поля возникают в результате прохождения электрических потенциалов через множество биологических соленоидов, которыми усеян наш мозг.
Важно отметить, что эти биологические соленоиды образованы не только очень большим количеством петель нервов, но и мириадами других колец белого вещества разного размера, включая микроскопические кольца, образованные дендритами и аксонами небольших сетей нейронов. Учитывая такое общее анатомическое строение, релятивистская теория мозга предсказывает существование не только уже известных кортикальных полей, но и большого количества субкортикальных электромагнитных полей.
Я считаю, что ядром уникальных вычислительных способностей нашего мозга является рекурсивное взаимодействие между этими двумя классами мозговых сигналов — цифровых потенциалов действия и возникающих в результате их прохождения по нервам аналоговых электромагнитных полей (рис. 5.1). В этом контексте я предполагаю, что электромагнитные поля нейронов обеспечивают появление эмерджентных свойств нейронов, которые мы считаем необходимыми для проявления высших ментальных и когнитивных способностей человеческого мозга. Дело в том, что такие электромагнитные поля служат своеобразным физиологическим «клеем», необходимым для слияния всего неокортекса в единый органический компьютер, способный объединять все наши мыслительные способности, а также обеспечивать очень быструю координацию между кортикальными и субкортикальными отделами мозга. За счет всего этого мозг способен выступать в роли единого компьютера. Это происходит по причине того, что находящиеся вдали от равновесия множественные аналоговые электромагнитные поля мозга согласуются между собой и создают то, что я называю нейронным пространственно-временным континуумом. В таком контексте нейронное пространство и время сливаются точно так же, как в общей теории относительности Альберта Эйнштейна для всей вселенной.
Рис. 5.1. Две схемы рекуррентных аналогово-цифровых взаимодействий в коре, опосредованных нейронными электромагнитными полями (НЭМП), в соответствии с релятивистской теорией мозга. A: Нейроны создают ряд электрических потенциалов действия — основных производимых мозгом сигналов цифрового рода, которые затем, при передаче по пучкам нервов, могут создавать аналоговые сигналы — электромагнитные поля. B: Далее такие электромагнитные сигналы способствуют возникновению новых потенциалов действия в соседних нейронах (рисунок Кустодио Роса).
В целом, по моему мнению, это электромагнитное взаимодействие позволяет мозгу координировать и точно синхронизировать активность отдельных частей, даже если они разделены между собой пространством или временем. Как в теории Эйнштейна, где время и пространство «сворачиваются» из-за наличия массы, изменяя пространственно-временные отношения между предметами, я полагаю, что этот пространственно-временной континуум нейронов тоже может в некоем нейрофизиологическом смысле «сворачиваться». В результате это приводит к слиянию отдельных частей мозга, достаточно удаленных друг от друга физически, в единую нейрофизиологическую/вычислительную единицу. Я считаю, что этот феномен — в менее развитой форме — существует у всех высших млекопитающих. Но, как мне кажется, у человека образующийся нейронный континуум (или ментальное пространство, как мне нравится его называть) представляет собой аналоговый нейронный субстрат, из которого возникают все сложнейшие функции человеческого мозга.
Динамика ментального пространства зависит от нескольких факторов: пространственного распределения и состава нейронных ансамблей мозга; структурных особенностей нервных путей и петель белого вещества, связывающих эти кластеры нейронов; доступной для мозга энергии; различных типов нейромедиаторов в нервной ткани; а также наших воспоминаний, являющихся ключевым компонентом в определении собственной точки зрения мозга. На самом деле изменения одного, нескольких или многих отдельных компонентов (таких как пространственная конфигурация, плотность аксонов и уровень миелина в некоторых петлях белого вещества) вдобавок к увеличению объема мозга и количества нейронов, возможно, и были причиной столь значительного развития способностей мозга, произошедшего более чем за 6 миллионов лет эволюции гоминидов.
Чтобы проанализировать некоторые идеи, возникшие в рамках релятивистской теории мозга, мой аспирант в Университете Дьюка Вивек Субраманян создал модель рекуррентной аналого-цифровой вычислительной системы, в которой отдельные нейроны возбуждаются с образованием потенциалов действия цифрового рода, что может приводить к возникновению электромагнитных полей, которые в результате индукции вызывают следующий цикл возбуждения тех же нейронов. После нескольких циклов работы системы Вивек обнаружил, что при возбуждении очень небольшого набора нейронов с образованием единственного потенциала действия вся сеть распределенных в пространстве нейронов быстро эволюционирует и достигает состояния точной синхронизации, так что большинство образующих ее нейронов возбуждаются одновременно, создавая идеальные ритмические колебания. Такая точная синхронизация отдельных нейронов также сказывается на электромагнитных полях, возникающих при совместном действии нейронов этого ансамбля. Хотя эта простая модель не является окончательным доказательством, она подтверждает, что рекуррентные аналого-цифровые взаимодействия нейронов могут быть задействованы в механизме масштабной синхронизации, необходимой для связывания многих кортикальных и субкортикальных структур в единую вычислительную единицу. Кроме того, это исследование открывает путь к созданию на основе мозга аналого-цифровых вычислительных систем, которые в будущем могут оказаться более эффективными, чем современные цифровые алгоритмы машинного обучения, используемые для создания искусственного интеллекта в попытках имитировать поведение человека. Я считаю, что это возможно, поскольку рекурсивные аналого-цифровые вычислительные системы смогут решать задачи, которые считаются недостижимыми для современных цифровых компьютеров.
Получив эти первые результаты, Вивек, еще один сотрудник нашей лаборатории Гари Лехью и я попытались создать физическую версию этой компьютерной модели. Мы решили эту задачу путем прямого подсоединения электрических сигналов, производимых цифровой моделью широкой сети нейронов, к трехмерному диффузно-тензорному изображению группы спиралей белого вещества человеческого мозга, как показано на рисунке 5.2. В этой физической модели при прохождении электрического заряда по каждой спирали создается электромагнитное поле. В свою очередь, создаваемые биологическими спиралями электромагнитные поля индуцируют возбуждение цифровых нейронов системы. Такая физическая интерпретация «нейромагнитного реактора» описывает гибридный аналого-цифровой компьютер; подобные эксперименты позволяют наблюдать и подробно анализировать динамические операции, которые, как мы думаем, происходят внутри нашего мозга.
Рис. 5.2. A: Аналоговый компонент аналого-цифрового компьютера, созданного по подобию мозговых сетей, таких как представленная на рисунке B трехмерная модель организации пучков белого вещества коры, связанных с регуляцией моторной функции, которые ранее были обнаружены с помощью диффузионно-тензорного метода (рисунок Кустодио Роса).
Примечательно, что пока я описывал наш новый гибридный аналого-цифровой компьютер, созданный исходя из концепции мозгосетей, группа исследователей из Национального института технологических стандартов в Боулдере, в Колорадо (США), сообщила о своем опыте использования магнитных полей для создания нового измерения в кодировании информации для разработки «нейроморфного» устройства — машины для более точной имитации действий человеческого мозга. Их и наши находки показывают, что электромагнитные поля нейронов могут в ближайшем будущем стать активной темой исследований в области нейроморфных вычислений.
Один важный вопрос, возникающий в связи с этой аналого-цифровой моделью работы мозга, заключается в том, не влияют ли окружающие нас магнитные поля, такие как магнитное поле Земли, на активность нашего мозга. Этот вопрос вполне уместен, поскольку ученые обнаружили, что разные организмы способны чувствовать магнитное поле Земли, например некоторые бактерии, такие как Magnetococcus marinus, насекомые, нематоды, моллюски, морские угри, птицы и даже млекопитающие, включая лесных мышей, замбийских кротов-крыс, больших коричневых летучих мышей и рыжих лисиц. Для лис характерно удивительное охотничье поведение: они отслеживают мелких грызунов, передвигающихся по подземным ходам, в какой-то момент подпрыгивают вверх, а затем бросаются вниз головой в землю и хватают добычу. И эти прыжки осуществляются вдоль северо-восточного направления.
Способность многих видов животных ощущать магнитные поля также означает, что любые серьезные изменения магнитного поля Земли, такие как инверсии магнитного поля, происходившие на нашей планете в прошлом, могут повергнуть жизнь этих видов в хаос, в значительной степени влияя на их способность питаться и ориентироваться в пространстве. Интересным следствием этой идеи является гипотеза, согласно которой некоторые незначительные временные нарушения когнитивной функции, пережитые космонавтами, высадившимися на Луне при выполнении программы «Аполлон», возможно, были вызваны неврологическим эффектом, связанным с выходом из-под влияния магнитного поля Земли, окружавшего их с момента зачатия. Однако это еще нужно подтвердить.