м продуцированием О2 при фотосинтезе растений). Если для грубой прикидки принять, что первичные базальты венерианской коры содержали порядка 10% закиси железа FeO, то для ее окисления до Fe2O3 в коре массой 5·107 триллионов т потребовалось бы порядка 5·105 триллионов т кислорода, и его заимствование из атмосферы уменьшило бы давление газа у поверхности Венеры примерно на 90 атм. Эта оценка показывает, что количественное объяснение исчезновения кислорода из венерианской атмосферы может быть дано при дополнительном учете свободного железа и других способных окисляться веществ в венерианской коре.
ГЛАВА 6: ЭВОЛЮЦИЯ ЗЕМНОЙ КОРЫ
Осадочные породы и скорость их образования. Пододвигание океанической коры под континенты в зонах Заварицкого-Беньофа. Образование океанической коры в рифтовых зонах. Изверженные породы. Образование континентальной коры над зонами Заварицкого-Беньофа. Метаморфические породы, гранитизация. Геохимическая эволюция земной коры. История руд
Земная кора состоит из осадочных, изверженных и метаморфических пород. Обсуждение их эволюции удобнее всего начать с осадочных пород, образование которых в океанах в настоящее время доступно непосредственному наблюдению (обширная сводка материалов об осадкообразовании в океанах содержится в недавно вышедшей фундаментальной книге А. П. Лисицына [33]).
Скорости океанического осадкообразования оцениваются по возрастам различных слоев в колонках донных осадков, получаемых при помощи грунтовых трубок, и в кернах, извлекаемых при бурении океанского дна.
Относительные возрасты слоев определяются палеонтологическим методом по видам организмов с известковыми раковинками - корненожек фораминифер и кокколитовых водорослей, а также организмов с кремнеземными раковинками - диатомовых водорослей и одноклеточных животных радиолярий, анализируются и попавшие в осадок пыльца и споры наземных растений. Слои разного возраста различаются также по характеру их намагниченности, на чем основаны методы палеомагнитной стратиграфии, к которым мы вернемся в главе 9.
Абсолютные возрасты слоев осадков определяются изотопными методами - по содержанию в них радиоактивного изотопа углерода С14 (возрасты до 50-60 тыс. лет); ионий-протактиниевым методом по изотопному отношению I230/Ра231, а также радиево-иониевым, ионий-ториевым и протактиний-ториевым методами (возрасты до 200 тыс. лет); по содержанию радиоактивных висмута (Bi214), алюминия (Al26) и бериллия (Be10) (возрасты до 0.3, 3 и 10 млн. лет); калий-аргоновым методом.
Полученные указанными методами оценки скоростей осадкообразования, а также карты типов осадков показывают, что в осадкообразовании проявляется широтная, циркумконтинентальная и вертикальная зональность. В зонах срединно-океанических хребтов осадки встречаются лишь в разрозненных «карманах». Наименьшие скорости осадкообразования - меньше 1 мм за 1000 лет, а местами даже меньше 0.1 мм за 1000 лет - наблюдаются в глубоких центральных котловинах океанов; осадки там имеют вид тонких слоев плотных красных глин. На большей части площадей Тихого и Индийского океанов осадконакопление происходит со скоростями 3-10 мм/1000 лет, причем образуются преимущественно карбонатные осадки. В высокоширотных и экваториальной зонах Тихого и Индийского океанов и на большей части площади Атлантического океана (в котором осадкообразование вообще происходит в несколько раз интенсивнее, чем в Тихом) скорость осадкообразования увеличивается до 10-30 мм/1000 лет, а ближе к берегам - до 30-100 мм/1000 лет, в краевых морях - до 100-500 мм/1000 лет, а напротив устьев больших и мутных рек - до тысяч и даже десятков тысяч миллиметров за 1000 лет. Средняя по всей площади океанов скорость осадконакопления получается порядка десятков миллиметров за 1000 лет.
Другой способ оценки средней скорости осадкообразования заключается в подсчете источников осаждающегося вещества. Главным источником является твердое вещество, выносимое с континентов реками в виде взвеси; по данным, изложенным в книге А. П. Лисицына [33], его масса оценивается в 18.5 млрд. т в год, причем около 40% этой суммы дают 11 крупнейших рек - Хуанхэ, Ганг, Брахмапутра, Янцзы, Миссисипи, Амазонка, Инд, Иравади, Меконг, Оранжевая и Колорадо. Сток растворенных веществ оценивается в 3.2 млрд. т, снос твердого вещества ледниками и ветром - соответственно в 1.5 и 1.6 млрд. т, скорость размыва морских берегов и дна - в 0.5 млрд. т в год. Вклад вулканического пепла в океаническое осадкообразование оценивается в 2-3 млрд. т в год. Наконец, из огромной годичной продукции планктона, порядка 550 млрд. т живого или 110 млрд. т сухого вещества, на дно океана осаждается лишь очень малая доля: карбонатного вещества - 1.36 и кремнистого - 0.46 млрд. т. По этим данным суммарная скорость океанического осадкообразования оценивается в 27 млрд. т в год. Поделив эту цифру на площадь океанов 3.6·1018 см2 и на типичный объемный вес твердой фазы рыхлых осадков натуральной влажности, скажем, на 1.5 г/см3, получим среднюю скорость осадкообразования, равную 50 мм/1000 лет, в хорошем соответствии с прямыми измерениями.
Средняя скорость наращивания осадочных пород плотностью 2.5 г/см3 получается равной 3 см/1000 лет (а скорость эрозии суши - вдвое больше). При такой скорости осадкообразования за 4 млрд. лет геологического времени сформировалась бы кора из осадочных пород толщиной 120 км и массой 10.8·107 триллионов т, тогда как, по данным главы 3, вся земная кора, состоящая из осадочных, изверженных и метаморфических пород, имеет среднюю толщину 33 км и массу 4.7·107 триллионов т (осадочных пород в ней лишь около 2·106 триллионов т). Даже если принять, что скорость осадкообразования в течение большей части геологического времени была меньше современной, скажем, втрое, то за 4 млрд. лет все же накопился бы слой осадочных пород толщиной 40 км, тогда как в современной континентальной коре его толщина в среднем равна 3 км, а в океанической коре - всего 0.7 км. Таким образом, мы сразу же приходим к важному выводу о том, что должны действовать какие-то эффективные механизмы превращения осадочных пород в изверженные и метаморфические породы континентальной коры и даже полного исчезновения осадочных пород, т. е. их ухода из земной коры в мантию.
Опускаться в мантию осадочные породы могут, вероятно, лишь вместе со всей несущей кору литосферной плитой. Наиболее подходящими местами для таких процессов представляются края литосферных плит. Естественно ожидать, что на границе между двумя сталкивающимися литосферными плитами (несущими, например, одна океаническую, а другая континентальную кору) та из них, которая обладает меньшей плавучестью (т. е. большей плотностью, в приведенном примере - океаническая), заглубляется в мантию под более плавучую плиту. Тогда в зоне заглубляющейся плиты следует ожидать глубокофокусных землетрясений.
Как отмечалось в главе 3, все глубокофокусные землетрясения, кроме Памиро-Гиндукушских, происходят вдоль глубоководных океанических желобов, с континентальной стороны от них (и там же находится большинство действующих вулканов). При этом глубины фокусов землетрясений закономерно возрастают по мере удаления от желоба в сторону континента, доходя до значений около 700 км приблизительно на таких же расстояниях от желоба (рис. 19). Проекции фокусов землетрясений на вертикальную плоскость, перпендикулярную желобу, вырисовывают в ней зону заглубляющейся плиты (уходящей вглубь сначала под небольшим углом к горизонту, затем - после излома под тяжестью верхней плиты - под углом порядка 45°, а с глубин в несколько сотен километров иногда еще круче); см. на рис. 20 пример желоба Тонга, а на рис. 21 пример Камчатского желоба (в котором зона заглубляющейся плиты имеет толщину около 50-70 км и наклонена к горизонту под углом около 50°; на глубинах 140-180 км, в месте пересечения плиты корнями вулканов, плотность фокусов землетрясений резко уменьшается).
Рис. 19. Изолинии глубин землетрясений в зоне желоба Тонга в Тихом океане. Область желоба с глубинами больше 6 км. заштрихована.
Рис. 20. Проекция фокусов землетрясений, зарегистрированных в 1965 г., в 300-километровой зоне вдоль желоба Тонга на вертикальную плоскость, перпендикулярную желобу.
Еще в 1946 г. выдающийся советский геолог А. Н. Заварицкий [34] высказывал предположение о возможности пододвигания океанической коры под континенты в областях островных дуг. Позже американский конструктор сейсмографов и электронных музыкальных инструментов Г. Беньоф установил, что очаги глубокофокусных землетрясений сосредоточены в сравнительно тонких зонах, заглубляющихся под углами порядка 45° под края континентов или окраинных морей. Таким образом, зоны заглубления океанических плит справедливо именовать зонами Заварицкого-Беньофа.
Рис. 21. Проекции фокусов землетрясений 1965 - 1968 гг. в Петропавловском секторе Камчатки на плоскость, перпендикулярную Камчатскому желобу, по С. А. Федотову с сотрудниками. Горизонтальные расстояния отсчитываются от оси вулканической дуги. 1 - вода; 2 - 'гранитный слой'; 3 - 'базальтовый слой'.
Оказалось, что механизмы глубокофокусных землетрясений, в том числе направления происходящих при них смещений в литосфере, соответствуют заглублению океанических плит под континентальные; скорости распространения сейсмических волн от промежуточных и глубоких очагов в пределах фокальной зоны на 4-7% выше, а затухание этих волн на порядок ниже, чем в окружающей мантии, т. е. фокальная зона действительно представляет собою плиту, более жесткую, чем окружающая мантия.
Движение плит вглубь создает вдоль океанических желобов, обычно на их континентальной стороне, зоны больших отрицательных изостатических аномалий силы тяжести - порядка 150-200 мгал, а перед ними, в зоне сжатия, и особенно за ними, над уплотняющейся заглубившейся частью океанических плит, наблюдаются положительные гравитационные аномалии, но меньшие по величине. В качестве примера на рис. 22 приводится профиль гравитационных аномалий на меридиональном разрезе через Яванский желоб в Индийском океане. Изостатическая аномалия порядка +200 мгал аналогична избыточному или недостаточному давлению в литосфере порядка +1000 атм. Поддержание таких избыточных напряжений в течение миллионов и десятков миллионов лет удается объяснить только движением заглубляющихся литосферных плит. Отметим, наконец, минимумы геотермического потока тепла на континентальных склонах океанических желобов (где толщины сталкивающихся литосферных плит складываются), а также наличие в рельефе океанского дна перед желобами передовых валов, свидетельствующих о горизонтальном сжатии литосферы в этих зонах.