История Земли — страница 17 из 47

Рис. 22. Профиль изостатических гравитационных аномалий Хейфорда-Пратта на меридиональном разрезе чекрез Яванский желоб в Индийском океане.

Рассмотрим теперь самый большой из океанов - Тихий. Большую долю его периферии - весь север и запад от Аляски до Новой Зеландии и юго-восток вдоль всей Южной Америки - образуют зоны Заварицкого-Беньофа, в которых океаническая литосфера уходит вглубь, в мантию Земли. Значит, внутри океана должны находиться области зарождения и растяжения новой океанической литосферы. Во всех океанах такими областями являются срединно-океанические хребты. Установлено, что на их осях в рифтовых долинах граница Мохоровичича, т. е. поверхность мантии, выклинивается и выходит к поверхности дна океана (драгирование на ней приносит образцы ультраосновных мантийных пород). Геотермический поток тепла здесь достигает максимума, широко развит подводный и надводный вулканизм с излияниями толеитовых базальтов, выходами гидротерм и гидротермальными изменениями коренных пород. Рифтовые зоны на осях срединно-океанических хребтов весьма сейсмичны. Землетрясения в этих зонах только мелкофокусные, с глубинами очагов до 10-20 км (а глубже, по-видимому, начинается приподнятая здесь вязкая астеносфера, в которой землетрясений не бывает). Смещения при землетрясениях имеют характер сбросов, что, как и провалившиеся вниз рифтовые долины, указывает на происходящее горизонтальное растяжение литосферы (расходящимися течениями на вершине восходящей ветви конвекции в мантии). Франко-американская экспедиция ФАМОУС в 1975 г. проводила детальный осмотр участка дна рифтовой долины в Срединно-Атлантическом хребте на глубинах около 4 км, используя обитаемые подводные аппараты - французский батискаф «Архимед», «ныряющее блюдце» «Циану» и американский «Алвин». При этом были обнаружены прямые визуальные свидетельства растяжения океанского дна в виде параллельных оси рифтовой долины трещин длиной от десятков метров до километров и шириной от дециметров у оси до десятков метров у крутых склонов рифтовой долины. Было обнаружено также, что наращивание новой океанической коры происходит путем излияния свежих базальтовых лав из цепочки маленьких вулканов (с высотами в десятки или немногие сотни метров) вдоль полосы шириной в 1-3 км на оси рифтовой долины.

Можно думать, что пространство между раздвигающимися в обе стороны от оси рифтовой долины литосферными плитами заполняется веществом астеносферы, которое, охлаждаясь сверху и кристаллизуясь, наращивает раздвигающиеся плиты. Пусть t - время охлаждения (равное расстоянию х от оси рифтовой долины, деленному на скорость отодвигания). Тогда, как и вообще в процессах внешнего охлаждения теплопроводных материалов, толщина образующейся плиты, т. е. глубина охлаждения (а также пропорциональная ей глубина оседания нарастающей плиты, т. е. глубина океана над нею), будет расти пропорционально t1/2 (а потому также пропорционально х1/2 ). О. Г. Сорохтин [23] о успехом применил этот закон для описания глубин океана в окрестности Срединно-Атлантического хребта (для чего ему пришлось принять скорость отодвигания к западу от хребта равной 1.9 см/год, а к востоку -1.6 см/год) и к западу от Восточно-Тихоокеанского поднятия (при скорости отодвигания 5 см/год). Результаты приведены на рис. 23.

Рис. 23, а. Описание глубин океана H в окрестности срединно-океанического хребта законом H ∼ x^½ по О. Г. Сорохтину [23]. Срединно-Атлантический хребет.

Рис. 23, б. Описание глубин океана H в окрестности срединно-океанического хребта законом H ∼ x^½ по О. Г. Сорохтину [23]. Восточно-Тихоокеанское поднятие.

Согласно изложенным данным, океаническая литосфера и кора образуются в рифтовых зонах срединно-океанических хребтов, раздвигаются в обе стороны конвекционными мантийными течениями и, дойдя до зон Заварицкого-Беньофа, уходят вглубь, в мантию Земли, так что дно океана движется от рифтовых зон до зон Заварицкого-Беньофа, как лента конвейера. Прямая связь заглубления океанических плит в мантию в зонах Заварицкого-Беньофа с их отодвиганием от осей рифтовых зон демонстрируется приблизительной пропорциональностью между шириной полос эпицентров землетрясений над зонами Заварицкого-Беньофа и скоростью отодвигания плит (рис. 24).

Рис. 24. Зависимость между шириной полос эпицентров землетрясений над зонами Заварицкого-Беньофа и скоростью поддвигания океанических плит.

Возраст того или иного участка океанической коры оказывается равным расстоянию этого участка от соответствующей рифтовой долины, деленному на соответствующую скорость отодвигания. Эти возрасты минимальны в окрестностях рифтовых зон срединно-океанических хребтов и максимальны на перифериях океанов. При типичной полуширине океана 5000 км и типичных скоростях отодвигания 2-5 см/год типичные возрасты дна океана на его периферии получаются порядка 100-250 млн. лет, т. е. много меньше, чем время существования Мирового океана, который, таким образом, является древним образованием с молодым, все время обновляющимся дном.

Идея о растяжении океанского дна была высказана еще в 1928 г. английским геологом Артуром Холмсом, который, однако, сам считал ее спекулятивной, не могущей иметь научного значения, пока не появятся фактические доказательства. Такие доказательства накопились за 15 лет послевоенного времени, и идея о раздвижении океанского дна была возрождена в статьях Г. Хесса и Р. Дитца 1961-1962 гг., русский перевод которых читатель найдет в сборнике [35]. Теперь эта идея является одной из основ так называемой новой глобальной тектоники (тектоники литосферных плит), которую мы будем излагать в главе 10.

Приняв концепцию об уходе в мантию в зонах Заварицкого-Беньофа океанической литосферы, коры и осадочных пород, мы снимаем кажущуюся трудность, создаваемую высокими темпами океанического осадкообразования, но, наоборот, приходим к необходимости объяснять наличие в континентальной коре мощных древних слоев осадочных пород: как уже отмечалось, на континентах встречаются осадочные породы любых возрастов до 3.8 млрд. лет, а мощности осадочных слоев в геосинклинальных зонах доходят до 10-15 и даже до 25-30 км (например, 30-километровые толщи переслоенных осадочных и вулканогенных пород в Андах). В современном океане многокилометровые мощности слоев рыхлых осадков (со скоростями распространения сейсмических волн Р до 4 км/сек.) имеются лишь у основания материкового склона в некоторых краевых и внутренних морях (например, в Беринговом море 3-10 км, в Черном море 4-8 км, в Каспийском море до 10 км, у атлантического побережья США до 6-8 км, в северной части Индийского океана в областях выноса рек Ганг и Инд 2.5-3 км и более). Поэтому вполне вероятно, что мощные осадочные слои геосинклинальных зон континентов образовались в существовавших там ранее краевых и внутренних морях.

Переходя к образованию изверженных пород, рассмотрим сначала вулканические, а затем также и плутонические породы. В настоящее время известно 808 действующих вулканов, для 569 из них зарегистрированы даты извержений. Их распределение на земном шаре показано на рис. 9. На рисунке видно, что большинство вулканов находится в зонах Заварицкого-Беньофа, с континентальной стороны от глубоководных океанических желобов. Некоторая часть действующих вулканов находится в центральных районах океанов, преимущественно в рифтовых зонах срединно-океанических хребтов (к ним относятся, в частности, вулканы Исландии), а также на поперечных трансформных разломах (к ним, по-видимому, относятся вулканы Гавайских островов); вероятно, немало подводных срединно-океанических вулканов еще не зарегистрировано.

Породы, образующиеся в результате извержений срединно-океанических вулканов, - это в основном толеитовые базальты, слагающие второй слой океанической коры. Их состав мы приводили на с. 24. На примере вулканических серий Гавайских островов известно, что кварц-толеитовые базальтовые магмы высокотемпературны, образуются в астеносфере сравнительно глубоко и выбрасываются при извержениях первыми; во втором слое океанической коры они должны занимать нижние горизонты. Затем появляются более тугоплавкие и менее глубинные высокоглиноземистые оливиновые базальты, занимающие верхние горизонты второго слоя. Наконец, изливается небольшое количество остаточных, наименее горячих и наименее глубинных щелочных нефелиновых базальтов.

Совершенно иной характер имеют породы, образующиеся при извержениях вулканов в зонах Заварицкого - Беньофа. В качестве типичного примера на рис. 25 приведены данные о составе лав, изливающихся из вулканов Курильских островов, по Е. К. Мархинину [25] (здесь взяты эффузивы - излившиеся лавы, а не гораздо более распространенные пирокластические продукты, вулканические пеплы, так как последние сильнее изменяются в результате внешних воздействий). На графике видно, что базальтов здесь уже мало (19%), больше всего пород с промежуточными содержаниями кремнезема - андезито-базальтов, андезитов и андезитодацитов (28.9+35.8+13.1%), появляются кислые породы - риолитодациты и риолиты (3.2%). Здесь же образуются и интрузивные (плутонические) породы промежуточного и кислого состава - диориты, гранодиориты и граниты. Объяснить это отличие от срединно-океанического вулканизма можно тем, что магмы вулканов и плутонов в зонах Заварицкого - Беньофа выплавляются не из мантии, а из заглубляющихся в нее в этих зонах плит океанической литосферы, попадающих в условия высоких температур и давлений. Предположение о связи андезитового магматизма с процессами в зонах заглубления океанической коры А. Н. Заварицкий высказывал еще в 30-х годах этого века.

Рис. 25. Доли пород с различным содержанием кремнезема в лавах, изливающихся из вулканов Курильских островов, по Е. К. Мархину [25].

На рис. 26 показано рассчитанное М. Токсёзом, Дж. Минеаром и Б. Джулианом (1971 г.) распределение температуры в плите океанической коры толщиной 80 км, заглубляющейся в мантию со скоростью 8 см/год. Плита в целом остается на всех глубинах заметно более холодной, чем мантия, но температуры в ней, конечно, все же по мере заглубления возрастают, особенно на ее границах, где выделяется много тепла из-за трения. Одним из важнейших эффектов этого прогрева должна быть