Необходимость полезного результата, как движущего и стабилизирующего систему фактора, возникла именно где-то здесь, на стыке предбиологических и примитивных биологических комбинаций материи. Следовательно, искать ответа на поставленные выше вопросы об универсальной роли результата в поддержании стабильности систем надо именно здесь.
Широкая общность законов и, следовательно, “философский корень” кибернетики надо искать в том периоде развития нашей планеты, когда сложилась первичная необходимость полезного результата.
Однако в связи с этим нам придется несколько по-новому посмотреть на диалектико-материалистическую формулировку жизни. Сохраняя свое принципиальное содержание, эта формула, как нам кажется, на новом этапе развития наук должна включить в себя все то, что создано в последние годы биологическим и физиологическим экспериментом.
Уже сам тот факт, что центральным пунктом прогресса жизни является полезный результат действия, заключенный в единую функциональную систему, указывает на то, что для полной характеристики жизненного процесса сейчас уже недостаточно только чисто субстратного основания. Материальный субстрат не может быть основой жизни без того, чтобы он не составил какую-либо систему отношений с более или менее стабильным конечным результатом, в каком-то отношении полезным самой системе. Это вытекает из свойств саморегу-ляторной динамической организации, которая была нами рассмотрена выше.
Как известно, диалектико-материалистическая формула жизни, вытекающая из общих установок “Диалектики природы” Энгельса, состоит в том, что на первый план ставится специфика субстрата, т.е. белковые тела. Несомненным остаётся и сейчас, что эта формулировка Энгельса: “Жизнь есть способ существования белковых тел”22 — является по своей глубокой материалистической сущности верной. Именно белковые тела составили тот субстрат, без которого невозможен был прогресс жизни и невозможно было совершенствование её форм.
Однако, согласно последним достижениям молекулярной биологии, “белковые тела” представляют собой настолько высокую « топень организации материи, что исторический подход к развитию жизни на Земле заставляет нас поставить неизбежный вопрос: а как произошли сами белковые тела? Являются ли они пассивным продуктом случайных предбиологических химичес-ких комбинаций, в миллионных количествах возникавших на основе самых разнообразных физических и химических условий нашей планеты? Или сам белок как высокополимеризо-ванный продукт является продуктом каких-то активных процессов, толкнувших пред биологические системы на путь неудержимого прогресса?
Специальная литература о происхождении жизни на Земле и в особенности о происхождении предбиологических систем подчинена почти исключительно субстратной концепции жизни и направляет свое внимание в сторону всех тех возможных физических условий, когда-то существовавших на нашей планете, которые способствовали формированию именно таких субстратов.
Достаточно посмотреть последнюю литературу, относящуюся к происхождению жизни, чтобы увидеть, что все попытки разрешить проблему происхождения жизни на Земле связаны с поисками тех возможных условий физического, химического и метеорологического характера, которые могли бы сформировать нечто близкое по составу какому-либо из белковых компонентов. Если отвести в сторону вопрос о межпланетных причинах происхождения жизни на Земле, то в этом смысле особенно важно отметить теорию А.И.Опарина23, Холдейна24, Бернала25 и др.
Характерной чертой “субстратных теорий” происхождения жизни являются поиски тех критических соединений, которые, однажды сложившись, могли бы в процессе дальнейших превращений привести в конце концов к формированию белковой жизни. Интересно отметить, что эти теории жизни, почти как правило, считают наиболее важным и критическим моментом в появлении примитивной жизни на Земле ее способность к воспроизведению, т.е. по сути дела наиболее поздний и производный фактор жизни.
Вполне естественно поэтому, что в связи с новыми открытиями в области биологических наук (генетика) внимание ученых стало сосредоточиваться на роли в этом процессе дезокси- и рибонуклеиновых образований.
Однако концепция поиска случайных субстратных комбинаций и планетарных катаклизмов неизбежно должна была привести к тому представлению, что само возникновение жизни находится в зависимости от случайного наличия только соответствующего материала — белка или его компонентов.
Как уже говорилось выше, это положение в своей общей форме правильно, ибо на всех этапах развития жизни именно белковые полимеры оказались способными обеспечить выживание. Однако последние достижения молекулярной биологии, и особенно ее достижения на клеточном уровне, дают возможность высказать предположение, что субстрат жизни, взятый как таковой, не является единственной и решающей причиной ее появления. Сейчас уже невозможно обойтись без динамических характеристик первичной организации, назвать ли ее “предбио-логической” или даже “предорганической”.
Становится все более ясным, что белковые тела, являясь высокоспециализированными и более поздним субстратом жизни, не могут быть исключительным фактором, который подготовил ?кизненную организацию в ее предбиологической фазе, а может быть даже и в предбелковой стадии.
Наоборот, последние достижения науки дают все основания думать, что появлению белка как полимерного образования и даже появлению одного единственного нуклеотида неизбежно должны (ияли предшествовать такие динамические принципы организации материи, которые впоследствии на более высокоорганизованном уровне послужили своего рода “колыбелью” для появления и развития самих дефинитивных белковых образований.
Что же это за принципы организации? И почему они оказались столь решающими в дальнейшем подборе все более и (юлее совершенных форм структурного развития? В разделе этой
< татьи, озаглавленном “Система и результат”, я уже подчеркнул го важное положение, что никакая, хотя бы самая обширная, комбинация процессов и элементов не способна составить саморегулирующуюся систему, если эта комбинация не приводит к появлению каких-то результатов, обратно влияющих на распределение взаимодействующих сил в системе и тем самым полезных самой системе.
Следовательно, до тех пор пока при взаимодействии процессов результат деятельности этой системы не станет стабилизирующим и саморегулирующим фактором, система не может быть устойчивой. Становится ясным, что всякий субстрат может быть оцениваем только на фоне уже сложившейся устойчивой динамической системы, т.е. только с точки зрения того, в какой степени, входя в систему, он способствует или совершенствует получение соответствующего результата. А это означает, что сами поиски субстрата жизни должны быть расширены поисками той формы устойчивого результата, который, став своеобразным фокусом, стал обрастать все более и более новыми компонентами, усовершенствующими или уничтожающими уже созданные ранее устойчивые системы.
Едва ли будет преувеличением, если я скажу, что стабилизация на основе принципов саморегулирования является самой первичной и самой решающей чертой жизненного процесса и именно она обеспечила поступательное развитие структур в предбиологическом периоде. Можно говорить с уверенностью, что никакие близкие к жизни субстраты, в том числе и белок, сами по себе не могут составить жизни, если они не вовлечены в какую-то более обширную систему, функционирующую по принципу саморегуляторной стабилизации.
Приведенные выше рассуждения ставят перед нами в несколько новой форме те кардинальные вопросы, которые связаны с изучением происхождения жизни на Земле. Мы неизбежно должны поставить вопрос: что произошло ранее, белковые тела и биогенные амины, которые впоследствии составили саморегу-ляторную систему — жизнь, или наоборот, вначале создалась какая-то или какие-то примитивные химические стабилизации с каким-то, может быть, даже еще не биологическим, результатом? Но этой стабильной устойчивости было вполне достаточно для того, чтобы такая длительно “переживающая система” стала пунктом дальнейшего субстрата усовершенствования на основе пусть весьма примитивного, но все же “естественного
В самом деле, уже самый факт наличия какой-то стабильности саморегуляторного типа и появления результата, хотя бы только в форме самой устойчивости системы, становится неизбежным фактором резистенции такой примитивной системы против всякого рода внешних возмущающих воздействий. Следовательно, с появлением каких-то устойчивых систем саморегуляции критерием допустимости или недопустимости нового ингредиента системы становится его значение для ее стабилизации: если от присоединения чего-то нового система становится еще более стабильной, то этого достаточно, чтобы компонент нашел в ней свое место, а система стала еще более устойчивой. И наоборот, если внешний физико-химический фактор вредит стабилизации системы, то последняя или преодолевает его действия, или сама перестает существовать как стабильная система.
На все эти вопросы можно дать только один ответ: первичной могла быть только какая-то стабильная система процессов, для которой вначале единственно полезным результатом, очевидно, была сама ее устойчивость.
Мы хорошо знаем из теории ультрастабильных систем, что каждая такая система неизбежно приобретает некоторую резистентность по отношению к внешним воздействиям, хотя бы уже по одному тому, что она “стремится” сохранить стабильность.
Разбирая подробно способность стабильных и полистабиль-ных систем к адаптации, Эшби, например, пишет, что повторяющиеся действия на такую систему способствуют “отбору форм, обладающих особой способностью противостоять ее изменяющему действию”. И дальше, говоря о “системах с миллионными переменами”, которые на протяжении миллиона лет на поверхности Земли претерпевают самые разнообразные комбинации взаимодействий, он пишет: “Разве только чудо могло предохранить ее (Землю. —