Избранные труды. Кибернетика функциональных систем — страница 29 из 78

в ней на отдельных этапах продвижения по рабочим системам,

10 — 2449 конечно, могут быть очень различны в зависимости от качества и специфики этих систем. Однако самый факт обобщения этих сигналов в понятие информации свидетельствует о значительном продвижении вперед.

Как полагают некоторые математики и кибернетики, сила кибернетического направления мысли состоит в том, что математический расчет физических параметров на более просто устроенной рабочей системе (машине) даст возможность в ка^ой-то степени аналогизировать этот расчет и для более сложных рабочих систем (организма и общества), а дальше нахождение общих математических закономерностей поможет прогрессивно исследовать в живых организмах те процессы, которые до сих пор были недоступны для исследования.

Очень важным для кибернетики является тот факт, что информация непрерывно циркулирует во всех рабочих системах с автоматической регуляцией и, что особенно важно, циркулирует она как в прямом (на путях управления объектом), так и в обратном направлении (на путях информации о состоянии объекта). Так постепенно возникла специальная задача точного расчета параметров входящих сигналов, закономерностей, их преобразования на всех узлах системы и их отношения к конечному эффекту. Для организма теория информации имеет особенно важное значение. Так, например, точный расчет параметров зрительного или слухового раздражителя, который действует в данный момент на организм, значительно обогатился теми математическими разработками, которые дает теория информации. Если же взять факт дальнейшего преобразования этой информации, т.е. перевода фотоэнергии в нервную энергию возбуждения, то уточнение физических параметров раздражителя окажется чрезвычайно полезным.

В настоящее время проблема приложения теории информации к физиологическим процессам, в особенности в области физиологии органов чувств и анализаторов, в Советском Союзе разрабатывается профессором Г.В.Гершуни. Теория информации нашла в целом ряде случаев совершенно неожиданное применение. Поскольку всякое воздействие на организм неизбежно приводит к каким-то интрамолекулярным перестройкам или в специфических рецепторных элементах, или в клетках всего тела организма, то возникла мысль, что и клетки тела, кумулирующие

в себе все наследственные качества человека, получают “информацию”. Эта идея в последние годы интенсивно разрабатывается в ряде стран, в том числе в Советском Союзе. Ученые стремятся выяснить, какое воздействие на зародышевые клетки может способствовать увеличению информации конденсированных в цепях белковых молекул ядра и протоплазмы и каким образом эта информация может быть донесена до онтогенетических этапов развития организма.

Как можно видеть, преобразование и передача информации в машинах, организмах и обществе является той общей основой, которая объединяет эти различные системы.

Понятно поэтому, что теория информации, разрабатывая возможность передачи именно информации, а не энергии, должна была столкнуться с целым рядом важнейших новых для науки проблем. К таким проблемам относятся физическая и техническая оценка решающих узлов передачи информации, расчет отдельных параметров этой информации, что особенно важно для биологических наук, кодирования многообразной информации в экономные комплексы и т.д.

Гак постепенно сложилась целая наука, открывшая возможность анализа таких сторон в передаче информации, которые раньше были науке неизвестны. В настоящее время в физиологии широко используются отдельные положения теории информации и особенно разнообразные способы кодирования информации, благодаря которым в нервной системе организма достигается тончайшее и точнейшее отражение внешнего мира.

Неизбежно должен был возникнуть вопрос о проходимости тех каналов, по которым циркулирует информация. В самом деле, гели человеческое ухо воспринимает вполне определенный диапазон частот, а в звуковом составе речи есть комбинация наиболее благоприятных для слуха модулированных колебаний этих частот, то неизбежно должен возникнуть вопрос о том пределе, до которого слуховой аппарат может допустить всевозможные нагрузки звуковыми колебаниями. Так постепенно от основного русла теории информации начинает вычленяться новая ветвь — теория связи”, одной из главных задач которой является расчет пропускной способности каналов связи. Для разработки этой гсории как частного принципа кибернетики были созданы целые школы, она сыграла огромную роль в усовершенствовании средств связи и в особенности в борьбе с шумами и с так называемой потерей информации.

Для физиологии нервной системы оба этих частных раздела кибернетики — теория информации и теория связи — играют большую роль. Они позволяют применить математический аппарат при анализе тех нервных импульсаций, которые возникают и передаются по нервным проводникам с различной скоростью. Так, например, можно рассчитать временные соотношения между нервными импульсами, поступающими в ганглионарный аппарат с различной частотой и по различным нервным волокнам. Скорость развертывания биохимических реакций, возбуждающих ганглий, и физические параметры входящих возбуждений при известных температурных коэффициентах могут в значительной степени определить предсказания конечного эффекта и судьбу входящих нервных возбуждений в центральной нервной системе. Именно эта сторона в последние годы привлекает особое внимание и Н.Винера.

Чтобы оценить значимость математического подхода к изучению физиологических явлений, разберем такой пример. Допустим в поле зрения кошки внезапно появилась летящая птичка, кошка делает быстрое движение и захватывает или не захватывает птичку. Что происходит в нервной системе кошки в этот момент? Мы с несомненностью можем утверждать, что оптические элементы глаза кошки получают информацию, выраженную в параметрах яркости, в параметрах формы и в динамических параметрах передвижения птички в пространстве. Конечно, это не единственные параметры той оптической информации, которую получает кошка, поскольку мы знаем, что она не будет протягивать лапу, если птичка летит поверх дерева. Это значит, что одним из составных параметров разбираемой информации является еще и параметр расстояния. Иначе говоря, на оптический аппарат кошки действует большое количество раздражителей, что и составляет входную информацию. Какова судьба этой информации в центральной нервной системе кошки?

Здесь сочетаются два важных фактора: видовая или филогенетическая информация, зафиксированная наследственно в соответствующих нервных связях мозга кошки, и та эпизодическая информация, которая поступила в данный момент через оптический аппарат кошки. Можем ли мы по этим двум существенным компонентам рассчитать ту форму движения или ту форму поведения, которая наступит в ответ на это раздражение? Математически говоря, мы сможем рассчитать выход возбуждения, если нам будут известны системы связи анализаторных аппаратов мозга с моторными эффекторными, непосредственно управляющими движениями лапы. Но вот тут-то и лежит причина скепсиса некоторых физиологов и биологов по отношению к возможностям кибернетики и именно к ее тенденции выразить различные формы поведения математически.

В самом деле, если тот же самый оптический феномен разыграется перед глазом кролика, то можно наверняка сказать, что кролик не бросится ловить птичку, хотя и его моторный аппарат в какой-то степени достаточен, чтобы сделать это движение.

Таким образом, мы видим, как бы ни был точно рассчитан интеграл входной информации и как бы ни были точно рассчитаны коммуникационные особенности оптической системы, мы сталкиваемся с биологической спецификой дальнейшего преобразования этой информации и, следовательно, волей-неволей должны выразить ее в терминах структуры и наследственности. Конечно, это ни в какой мере не исключает возможности того, что дальнейший анализ мог бы быть произведен е помощью математических расчетов, однако кибернетик на этих путях будет встречать все больше и больше препятствий, зависящих от специфики той наследственной информации, которая заложена в клетках, синапсах и белковых структурах соответствующих нервных элементов.

Все что говорилось выше, касается всего лишь рефлекторного действия, если же прибавить к этому как совершенно обязательное следствие информацию о результатах действия, то задача, конечно, значительно усложняется. Однако об этом более подробно будет сказано ниже.

Значительную роль в развитии кибернетики как самостоятельного научного направления сыграло представление о так называемых обратных связях (feed back). Некоторые математики, физики и даже физиологи считают, что именно констатация обратных связей, или обратной информации, способствовала развитию теории автоматического регулирования, которая по существу составляет новую эру в теории управления и регулирования.

В этом есть доля истины, ибо до тех пор, пока в поле зрения математиков и инженеров не попала обратная связь, трудно было надеяться на развитие теории автоматического регулирования.

Смысл обратной связи в машинных устройствах состоит в том, что тот регулируемый объект, для которого сконструирована вся рабочая система, способен по каналам обратной связи информировать регулирующее устройство о своем состоянии. Этим самым круг регулирования замыкается, и вмешательство человека на данной стадии работы машины делается ненужным. Здесь важно, чтобы само регулирующее устройство могло переработать полученную обратную информацию о состоянии регулируемого объекта и направить новое регулирующее влияние в соответствии с возникшими изменениями регулируемого объекта.

Современная техника автоматического регулирования имеет тысячу примеров такой обратной связи, а современные достижения электронной техники, охватывающей и преобразующей все виды энергии, позволяют сконструировать любые информирующие устройства и схемы связей. Так, например, потребность какого-нибудь города в электроэнергии, получаемой от горной электростанции, может внезапно возрасти, например в связи