Этот процесс длительный. Он связан с непрерывной цикру-ляцией в афферентных системах центрально-периферических циклов возбуждений. В результате создается новая программа действия, которая может сформировать на периферии именно те конечные результаты, которые соответствуют сложившемуся уже ранее акцептору действия.
Как мы видели, нейродинамика формирования афферентного синтеза в том и состоит, что на протяжении этой стадии ориентировочно-исследовательская реакция создает два основных условия, обогащающих афферентный синтез все большим и большим количеством афферентной информации.
С одной стороны, это достигается чрезвычайно мощным энергетическим воздействием ретикулярной формации и гипоталамуса на кору больших полушарий. Благодаря этим воздействиям на корковых нейронах создаются все условия облегченного взаимодействия между клеточными элементами коры мозга, расположенными в различных, часто весьма удаленных друг от друга, пунктах коры.
С другой стороны, та же самая ориентировочно-исследовательская реакция способствует центробежным влияниям и на периферические рецепторы. Это последнее действие приводит к тому, что порог чувствительности включенного в данный момент в ориентировочно-исследовательскую реакцию анализатора значительно снижается, что еще больше соответствует успеху афферентного синтеза и формированию новой, более успешной программы действия.
Из приведенных выше нейродинамических условий, которые немедленно складываются после рассогласования между реальным результатом и акцептором афферентной модели результата, акцептор действия является весьма важным стимулом, создающим новый поиск с включением новых афферентных аппаратов и созданием новой программы действия.
Весь приведенный выше материал дает законченную архитектуру поведенческого акта, все узловые механизмы которого нейрофизиологически аргументированы, а поведенчески много раз были показаны в специально поставленных экспериментах (Макаренко, Асмаян и др.).
Эта физиологическая архитектура представляет собой весьма разнородную картину по качеству интегративных процессов, причем само взаимодействие между этими процессами является специфической чертой именно интегративного целого, а не его частей. Так, например, возникновение акцептора действия немыслимо без предварительного афферентного синтеза, а с другой стороны — без тех процессов, которые связаны с оценкой сигналов с периферии о полученных результатах.
Совершенно очевидно, что каждый из этих узловых механизмов содержит в себе бесконечное переплетение и взаимодействие возбуждений и торможений и в каждом из этих механизмов много раз встречаются одни и те же различные возбуждения. Но именно в этом и состоит смысл универсальной модели поведенческого акта. Хотя ее архитектура по составу процессов и механизмов весьма сложна, но она представляет собой логически законченное образование, чем и определяется место каждого процесса и механизма в этой большой архитектуре.
С точки зрения кибернетики, такая модель работы мозга является особенно удобной, поскольку, будучи построена на тончайших нейрофизиологических закономерностях, вместе с тем открывает широкие перспективы для моделирования и математической обработки ее частных механизмов. Но именно соотношение этих частных механизмов с целой архитектурой и представляет собой то, что может быть использовано при моделировании и конструировании электронных и технических конструкций. Именно этим и объясняется тот факт, что многие и нейрофизиологи, и кибернетики обратили специальное внимание на достоинства изложенной выше физиологической архитектуры целого поведенческого акта (Мэгун, 1963; Клаус, 1962; Г.Паск, 1963; М.Минский, 1964, А.Фессар, 1961, и др.).
В данной работе мне интересно было продемонстрировать для психологов физиологическую архитектуру поведенческого акта как целого потому, что именно поведенческий акт является связующим звеном между нейрофизиологией, высшей нервной деятельностью и психологией.
Как можно было видеть, в настоящее время мы уже по целому ряду узлов этой физиологической архитектуры имеем вполне определенные результаты, полученные в тонком нейрофизиологическом исследовании.
Когда-то Альфред Фессар, принимая наши принципиальные положения о физиологической архитектуре поведенческого акта, заметил, что наступил момент, когда в тонком нейрофизиологическом эксперименте мы должны показать те механизмы и процессы, с помощью которых удерживается как единое интегративное целое эта поведенческая архитектура (А.Фессар, 1959). Сейчас мы уже можем сказать, что значительная доля тайн, которые включены были в разных узлах физиологической архитектуры поведенческого акта, нами в какой-то степени раскрыта, хотя еще многое остается исследовать для того, чтобы сделать ясной эту удивительно целесообразную организацию, создававшуюся миллионы лет.
Во всяком случае, мы сейчас близки, например, к пониманию механизмов афферентного синтеза до молекулярного уровня включительно. Мы подошли вплотную к оценке составных физиологических компонентов акцептора действия и поняли огромную роль результата как самостоятельного компонента всей архитектуры.
И лишь только два узловых механизма, с логической точки зрения локализованные довольно точно, до сих пор еще не поддаются тонкому нейрофизиологическому анализу и детерминистической расшифровке. Это — “принятие решения” и “рассогласование” между реально полученными результатами и афферентной моделью этих результатов, отраженные в акцепторе действия.
Однако, основываясь на добытых нами весьма многочисленных нейрофизиологических фактах, я не имею оснований думать, что эти сложные вопросы являются неразрешимыми. В качестве примера, оправдывающего такой оптимизм, можно указать на то, что роль “копии команды” при совершении какого-либо афферентного акта становится все более и более ясной. Как показывают микроэлектродные исследования, ответвляясь по коллатералям тысяч различных аксонов, эти эфферентные возбуждения долгое время остаются активными в замкнутых “ловушках возбуждения”, открытых Лоренте Де Но. Эти возбуждения, очевидно, являются циклическими и в целом комплексе остаются активными до того момента, когда придет обратная афферентация о полученных результатах.
Для меня сейчас является несомненным, что интимный акт оценки полученных результатов происходит где-то здесь, на стыке еще свежих, энергетически заряженных следов от эфферентного приказа к действию с приходящими позднее сигналами о полученном результате.
Мы прилагаем сейчас все усилия на самых различных уровнях исследования, от молекулярных процессов до высшей нервной деятельности и психологии включительно, чтобы объединить в одной концепции все уровни наших знаний о мозге.
Задача, несомненно, трудная, но мы хорошо знаем, что никогда еще в истории науки не было такого случая, чтобы страх перед трудностями исследования способствовал научному прогрессу.
Ill
МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНЫХ СИСТЕМ
к книге Ф.Джорджа“Мозг как вычислительная машина”
Едва ли будет преувеличением сказать, что широкие круги читателей, работающих в области биологии и медицины, связывают успехи кибернетики, да, пожалуй, и самую кибернетику с возможностью моделирования различных жизненных процессов и особенно работы мозга.
Моделирование — вот понятие, с которым сейчас наиболее тесно связаны надежды на кибернетический подход и математическое изучение жизненных процессов и функций. Можно с полным правом утверждать, что смоделировав какой-либо процесс или явление жизни с достаточной степенью точности мы получаем в руки возможность произвольно изменять его, т.е. в сущности управлять им.
Неудивительно поэтому, что в последние годы литература, пограничная между биологией и кибернетикой, чрезвычайно богата сообщениями о попытках моделировать самые разнообразные “элементы” и “узлы” нервной деятельности. Моделируется проведение возбуждений по нервам, проведение возбуждений через синапс, нервные центры, поведение, обучение, мышление и т.п. И надо сказать, что подчас мы встречаем весьма удачное соответствие функций модели и функций организма.
Однако наряду с этим чисто количественным ростом попыток моделирования постепенно назревает необходимость разработать общие правила, методологические принципы, которые должны быть предпосылкой любой попытки моделирования, независимо от степени сложности моделируемого явления.
Но, к сожалению, именно эта методологическая сторона моделирования совершенно неразработана. Еще нет отчетливого ответа даже на такой простой вопрос: какие именно параметры
^ В кн.: Джордж Ф. Мозг как вычислительная машина. — М.: Изд-во иностр. лит-ры, 1963, с. 5—18.
моделируемого процесса или механизма являются решающими для успеха самого моделирования и каков удельный вес отдельных параметров данного функционального проявления организма.
В этом смысле предлагаемая вниманию читателя книга Джорджа несомненно полезна, хотя она и имеет много существенных недостатков в других отношениях. Несмотря на то, что книга Джорджа и изобилует нейрофизиологическими, психологическими и поведенческими данными, взятыми автором из новейшей научной литературы, все же он ставит акцент именно на методологических предпосылках моделирования.
По своему содержанию книга Джорджа относится к серии работ по нейрокибернетике, появившихся в последнее время в литературе, в которых делается попытка сблизить нейрофизиологию с современными представлениями и достижениями математической логики и технической кибернетики. Стало уже традиционным апробировать такое сближение на конструировании различных моделей как целого мозга, так и его отдельных узловых механизмов. Модель оказалась своего рода пробным камнем для определения полезности комплексных исследований нейрофизиолога и кибернетика.
В определенном смысле к этой категории работ можно причислить уже опубликованную в переводе на русский язык книгу Эшби “Конструкция мозга” (Москва, 1962). К ним же относится и недавно изданная за рубежом монография Д. и К.Стэн-ли-Джонсов “Кибернетика живых систем” и другие. Особенно же много работ подобного направления публикуется в форме отдельных статей и симпозиумов (см., например, сборник “Электроника и кибернетика в биологии и медицине”, Москва, 1963).