В главе 6 мы говорили только об одной разновидности ядерных реакций – реакциях деления ядра. Именно деление тяжёлых ядер под воздействием субатомных частиц используется в ядерном оружии и в атомных энергетических установках. Но существует не только деление тяжёлых ядер, но и обратный процесс – синтез, то есть образование нового, более тяжёлого ядра за счёт слияния двух или большего количества лёгких ядер.
Синтез ядер открыли примерно в то же время, что и расщепление. В 1930-е годы австралийский физик Марк Олифант работал в Кавендишской лаборатории в Кембридже – той самой, где Кокрофт и Уолтон проводили опыты по бомбардировке ядер лития высокоэнергетическими протонами (тут я снова отсылаю вас к главе 6). Самым известным открытием Олифанта в рамках этой работы было выделение трития – сверхтяжёлого радиоактивного изотопа водорода – T (или 3H). Но Олифант пошёл дальше.
В 1933-м американский физик Гилберт Льюис, впервые выделивший чистую тяжёлую воду – оксид дейтерия D2O, прислал в Кавендишскую лабораторию несколько образцов нового вещества для дальнейших исследований. Ядра дейтерия, дейтроны D (2H), состоящие из одного протона и одного нейтрона, стали использовать в качестве бомбардирующих частиц в ускорителе, сконструированном под руководством Олифанта. Олифант обнаружил, что при столкновении дейтронов с ядрами трития (тритонами) или другими дейтронами высвобождается значительно больше энергии, чем могло бы получиться при сложении стартовых энергий частиц. Он сделал вывод, что столкновение освобождает энергию связи, затрачиваемую на поддержание стабильного состояния ядер. По сути, Олифант впервые в истории провёл термоядерную реакцию (столкновение дейтерия и трития приводит к образованию гелия-4, высвобождению одного нейтрона и 17,59 МэВ энергии). Он описал это явление и заодно предположил, что именно цепная термоядерная реакция поддерживает функционирование звёзд, и в частности Солнца. Впоследствии в ходе активных исследований в этой области теория Олифанта подтвердилась: протон-протонный цикл, определяющий превращение водорода в гелий внутри звёзд, в 1938 году объяснил американский астрофизик Ханс Бете.
Выброс большого количества энергии в первую очередь, конечно, интересовал военных. Так что направление исследований и в США, и в СССР довольно быстро сдвинулось в сторону термоядерных бомб (об этом можно прочитать в главе 39). Но параллельно велась работа и над управляемой термоядерной реакцией. Новая технология в теории могла решить мировую энергетическую проблему: никакие атомные электростанции не сравнятся по объёму высвобождаемой энергии с термоядерной реакцией. Но вот незадача: атомные электростанции появились уже в 1950-х, термоядерные бомбы – тоже. А на службу мирному делу термояд не поставлен до сих пор! Каждые несколько лет учёные предрекают, что управляемая термоядерная реакция будет проведена в ближайшее время, но воз и ныне там.
Тем не менее в этом направлении всё время делаются большие шаги. В частности, для исследования реакций термоядерного синтеза был разработан целый комплекс оборудования, позволяющего приблизиться к управляемой термоядерной реакции и в теории добиться её осуществления. Одним из важнейших элементов исследовательской системы являются специальные магнитные ловушки, способные удерживать высокотемпературную плазму, не позволяя ей контактировать с другими элементами реакции. Существует несколько типов таких ловушек, но два основных – токамаки и стеллараторы. Первые появились в Советском Союзе.
Принцип термояда
Во время реакции термоядерного синтеза более лёгкие ядра объединяются в более тяжёлые. Самопроизвольно такая реакция никогда не произойдёт, по крайней мере на Земле (внутри звёзд она возможна и даже обязательна), поскольку взаимодействие между ядрами определяется двумя противоборствующими силами.
Во-первых, это простая и понятная сила электростатического отталкивания: по знаменитому закону Кулона одноимённо заряженные тела, в том числе ядра, отталкиваются друг от друга.
Во-вторых, это так называемые ядерные силы – проявление сильного ядерного взаимодействия, одного из четырёх фундаментальных взаимодействий. Оно наблюдается только на очень малых расстояниях и отвечает за связь кварков в протонах и нейтронах, а также протонов и нейтронов в атомных ядрах – именно благодаря сильному взаимодействию ядра не разваливаются. Природа сильного взаимодействия обусловлена свойствами фундаментальных частиц – кварков, из которых формируются более крупные частицы, а также глюонов – переносчиков сильного взаимодействия. Но я не хочу и не буду вдаваться в физику сильных взаимодействий: она достаточно сложна и вряд ли тогда мои объяснения поместятся в одну главу, а для базового понимания сути термоядерных реакций достаточно уже приведённых сведений.
Так вот, на очень малых расстояниях, менее одного фемтометра (10–15 метра), сильное взаимодействие начинает преобладать над силой электростатического отталкивания между атомами. Для понимания: это расстояние примерно в 100 000 раз меньше размеров атома, оно ближе к размерам атомного ядра. Минимальная энергия, которую нужно затратить частице, чтобы преодолеть кулоновское отталкивание, называется высотой кулоновского барьера или просто кулоновским барьером.
Для преодоления кулоновского барьера ядрам нужно сообщить значительную кинетическую энергию, например посредством разгона на ускорителях или нагрева. В последнем случае температура, требуемая для реакции, очень высока и достигает нескольких миллионов градусов.
Теперь об элементах. Вообще в реакции термоядерного синтеза с выделением энергии вступают любые лёгкие элементы вплоть до железа, нужно только создать достаточную температуру. В качестве примера можно привести звёзды, в ядрах которых происходит термоядерное горение водорода, гелия, углерода, кислорода, азота и т. д. Однако создавать соответствующие температуры и давления на протяжении достаточного времени под силу звёздам, но не человеку. Поэтому приходится выбирать из более или менее осуществимых вариантов, требующих не таких высоких температур. Есть несколько типов возможного топлива для управляемой термоядерной реакции. Самый распространённый вариант – это реакция дейтерия 2Н и трития 3Н (именно её провёл Олифант, и именно она используется в водородной бомбе). Когда ядра дейтерия и трития преодолевают кулоновский барьер и происходит их слияние, образуется новый элемент – гелий – и высокоэнергетический нейтрон, а сама реакция выглядит вот так:
21H + 31H → 42He + n + 17,589 МэВ
17,589 МэВ – выделяющаяся при реакции энергия. Есть и другие варианты термоядерного топлива, например дейтерий 2Н и 3Нe (гелий-3) или два ядра дейтерия (это называется монотопливом).
Как уже говорилось, температура и, соответственно, энергия преодоления кулоновского барьера очень высока, и она в любом случае значительно превышает температуру ионизации атомов топлива. Скажем, для дейтерия и трития энергия преодоления потенциального барьера составляет 100 000 эВ, а энергия ионизации их атомов – всего 13 эВ! Так что топливо в процессе реакции будет представлять собой облако ионизированного газа, то есть плазму.
А теперь представьте, что у нас есть облако высокотемпературной, нагретой до нескольких десятков миллионов градусов плазмы. Как вообще её контролировать? Как удерживать? Она расплавит или даже испарит любое вещество, из которого сделаны стенки сосуда, не говоря уже о том, что, если поместить её в какой-то идеальный неуничтожимый объём, она попросту начнёт остывать, теряя необходимые для реакции свойства.
Так появились токамаки.
Как сдержать плазму
О том, что эксперименты с высокотемпературной плазмой на существующем оборудовании проводить не получится, знали ещё в 1940-е годы, об этом писали многие исследователи, в том числе Энрико Ферми. Примерно тогда же родилась и концепция, позволяющая удерживать плазму. Поскольку последняя является облаком ионизированного газа, её можно контролировать, поместив в магнитное поле: электроны и ионы станут двигаться вокруг магнитных силовых линий, не выходя за пределы заданной области. В чистой теории такое магнитное поле можно было создать с помощью соленоида – цилиндрической проволочной обмотки, но на практике эта схема не работала, поскольку требовалась замкнутая тороидальная конструкция, в которой плазма могла бы циркулировать по кругу в течение неограниченного времени.
Ферми обозначил проблему такой системы. В тороидальной структуре возникала опасность «расслоения» плазмы: магнитное поле у внутренней стороны тора сильнее магнитного поля с внешней стороны, что приводит к неустойчивости и выбросу плазмы на внешнюю стенку тора. Это, естественно, стало бы катастрофой. Очевидного решения не было.
В 1947 году в Аргентину эмигрировал немецкий ядерный физик Рональд Рихтер. Руководствуясь отчасти знаниями, полученными во время работы в Германии, отчасти желанием заработать, Рихтер пообещал президенту Аргентины генералу Хуану Перону разработать и построить термоядерную электростанцию, которая позволит получать практически бесплатную энергию в неограниченных количествах. Перон, слепо веривший во все немецкие технологии, дал Рихтеру карт-бланш и пообещал любые необходимые средства. Проект получил название Proyecto Huemul[5], и в 1951-м Рихтер торжественно объявил, что добился управляемой термоядерной реакции в лабораторных условиях. Перону он лично продемонстрировал «реакцию», которая на самом деле была горением водорода на электрической дуге. Но 24 марта 1951-го Перон публично объявил об успехе, и новость о достижении аргентинской ядерной физики облетела все газеты мира.
В Аргентине всё закончилось печально: проект закрыли, Рихтера арестовали за мошенничество, после чего он был выслан из страны, а Перон в 1955 году лишился власти в ходе военного переворота. Но первоначальное заявление об аргентинском успехе взбудоражило многих учёных, и в частности американского астрофизика Лаймана Спитцера. Хотя Спитцер специализировался на теории, причём его больше интересовали звёзды, а не лабораторные эксперименты, идея его захватила. Он много писал о космической плазме и теперь задался идеей придумать систему её удержания в земных условиях. Блестящим образом он модифицировал раскритикованный Ферми тор, превратив его в стелларатор.
Если вы посмотрите на фотографии стелларатора, вы увидите, что больше всего он похож на бессистемно смятый бублик. Как будто тор попал в руки великана, который его погрыз, потёр, погнул – и выбросил. На самом деле в измятости стелларатора есть чёткая схема: магнитные силовые линии внутри него многократно перекручены и в первом приближении напоминают ленту Мёбиуса (хотя и не являются ею). Благодаря этому частицы плазмы на разных отрезках то удаляются от оси установки, то возвращаются к ней, и тем самым поддерживается устойчивость системы.
Соответственно, само магнитное поле в стеллараторе создаётся только внешними катушками сложной формы, что позволяет использовать его непрерывно в течение любого промежутка времени, в отличие от токамака – об этом мы ещё поговорим. Важный момент: существует немало конфигураций стеллараторов, потому что перекрутить траекторию движения плазмы, чтобы сделать её устойчивой, можно множеством способов. Впоследствии собственные стеллараторы, в частности торсатрон, были запатентованы и в СССР.
На момент изобретения стелларатора Спитцер работал в Принстонском университете. В 1951 году при университете была образована лаборатория физики плазмы, которую и возглавил Спитцер. Финансирование Принстон получил от военных, поскольку в это же время активно шла работа над термоядерным оружием, а программу, по которой работал Спитцер, назвали проектом «Маттерхорн» в честь альпийской вершины – Спитцер был, помимо прочего, известным альпинистом.
В 1952–1953 годах в лаборатории построили первый в мире стелларатор, известный как Model A. Это была небольшая опытная модель из 5-сантиметровых трубок из термостойкого боросиликатного стекла, и она подтвердила правильность концепции. Потом появились модели B-1 и B-2, а позже и другие конструкции.
Но у стеллараторов имелись и недостатки. В частности, из-за сложной траектории плазма теряла много энергии, и её было значительно сложнее довести до требуемого температурного режима, не говоря уже об очень коротком времени удержания при тех же энергозатратах в сравнении с токамаком.
Давайте теперь узнаем, что такое токамак.
Советская идея
Перекрученный тор не мог быть единственным решением проблемы Ферми. И если в США пошли по пути Спитцера, то в СССР предложили совершенно другой способ магнитного удержания плазмы – как показала практика, более перспективный.
У токамака был свой «Спитцер», и его звали Олег Лаврентьев. В 1948 году он служил солдатом-срочником на Сахалине и занимался самообразованием. Читал книги, учебники, подписался на журнал «Успехи физических наук». Особенно увлекла его ядерная физика, и в 1950-м он написал две свои первые статьи, отправленные секретной почтой в Комитет тяжёлого машиностроения ЦК. Там письма переправили эксперту – Андрею Сахарову, и тот понял, что наткнулся на золотой самородок. Во второй статье Лаврентьев излагал оригинальную систему магнитного удержания плазмы, то есть токамака; сам того не зная, он нашёл решение проблемы Ферми.
Отслужив, Лаврентьев вернулся в Москву, поступил на физфак МГУ, удостоился личной встречи с Берией и получил доступ в Лабораторию измерительных приборов АН СССР, то есть в будущий Курчатовский институт, где вели свои исследования Сахаров и Тамм. Олег Лаврентьев сделал достаточно типовую для советского учёного научную карьеру, но тему токамака дальше развивали другие специалисты.
Надо сказать, что письмо Лаврентьева пришлось кстати: к 1950 году Сахаров уже работал над системами магнитного удержания плазмы и столкнулся с проблемой Ферми. Пришедшая с Сахалина статья подтвердила правильность его собственных идей и послужила катализатором. Уже в январе 1951 года по запросу Сахарова было выделено финансирование под лабораторию, аналогичную проекту «Маттерхорн», а в 1954-м появился первый экспериментальный токамак.
В отличие от стелларатора, токамак не «мнётся», а остаётся совершенно правильным тором, отсюда и его название-аббревиатура – тороидальная камера с магнитными катушками. Этот тор надет на сердечник большого трансформатора, а плазменный шнур (то есть поток плазмы) внутри тора служит вторичной обмоткой. Именно ток, текущий в плазме, обеспечивает первичный её нагрев – примерно до 20 млн градусов; дальше она нагревается другими методами, например микроволновым излучением. Магнитное поле, удерживающее плазму, формируется в магнитных катушках, но их, как мы уже знаем, недостаточно для обеспечения устойчивости «плазменного шнура».
Вот тут-то и используется тот факт, что плазма в токамаке служит обмоткой. Ток, протекающий через неё, создаёт вокруг себя собственное магнитное поле, которое называют полоидальным. Для контроля этого поля в конструкции токамака предусмотрены полоидальные катушки, «надетые» на ось тороидальной камеры. Полоидальное поле слабее тороидального, но его достаточно, чтобы ограничивать траекторию плазмы, движущейся вдоль силовых линий, и не допускать её прикосновения к стенкам. То есть, по сути, в токамаке движение плазмы обеспечивается двумя магнитными полями: одно задает тороидальную траекторию плазменного шнура, второе стабилизирует её, не давая шнуру расплываться.
Как и стелларатор, токамак имеет свои преимущества и недостатки. Плюс в том, что плазма в нём теряет значительно меньше энергии и поддерживать нужные её характеристики проще. А основной недостаток токамака – в сложности конструкции и значительно более высокой стоимости, чем у конкурента. Кроме того, в отличие от стелларатора, который может работать непрерывно, токамак – «импульсное» устройство, потому что для появления тока во вторичной обмотке (плазменном жгуте) ток в первичной обмотке должен возрастать. А увеличивать его до бесконечности невозможно, так что процесс приходится прерывать и начинать заново.
Токамак против стелларатора: день завтрашний
В теории разработаны ещё несколько концепций устройств магнитного удержания плазмы. Например, пробкотрон, или магнитное зеркало, – незамкнутая система, свойств которой не хватает, к сожалению, для достижения плазмой должных температур. Так что реально работают только токамаки и стеллараторы.
Тут надо заметить, что, несмотря на появление устройств такого типа в начале 1950-х годов, реальную функциональность они обрели лишь к концу 1960-х. Первым по-настоящему рабочим токамаком, да и вообще установкой для магнитного удержания плазмы, считается Т-3, построенный в Курчатовском институте в 1968 году: на нём впервые в истории удалось достигнуть температуры в 10 миллионов кельвинов. Стеллараторам до такой температуры было далеко, притом что и её не хватало для управляемой термоядерной реакции. Это достижение на длительное время отодвинуло стеллараторы на второй план – вплоть до 2000-х годов абсолютное большинство магнитных ловушек для плазмы в мире были токамаками.
На сегодняшний день токамаки используются в лабораториях России, США, Японии, Китая, Великобритании, Франции – всего на май 2018 года существовало около 30 токамаков; самый старый работающий экземпляр был построен ещё в середине 1960-х в Курчатовском институте, после чего передан Чехословакии и многократно модифицирован. Сегодня он находится в Чешском техническом университете в Праге.
Конкуренция обострилась в 2000-х годах с появлением квазисимметричных стеллараторов. Первым таким устройством стал HSX (Helically Symmetric eXperiment), построенный в Висконсинском университете в Мадисоне по проекту профессора Дэвида Андерсона. На самом деле за хитрым названием прячется очередная конфигурация «бублика» – как я уже говорил, варьировать мятый тор стелларатора можно десятками разных способов, главное – найти оптимальную конфигурацию, которая позволит снизить потери энергии. Разработанные в последние годы конфигурации и особые режимы как раз к этому и привели – стеллараторы, избавившись от своего основного недостатка, постепенно начинают успешно конкурировать с токамаками. В 2015 году в немецком городке Грайфсвальд начал работу сверхсовременный стелларатор Wendelstein 7-X, и с его помощью уже добились температур плазмы в районе 80 млн градусов Цельсия.
Основная надежда мирового исследовательского сообщества сейчас связана с проектом ITER (Международный экспериментальный термоядерный реактор). Это примерно как МКС, только в области термоядерных реакций. Задуман он был ещё в середине 1980-х при участии СССР, США, Японии и ряда европейских государств, но ввиду множества политических и финансовых проблем практические работы начались лишь в 2005 году. Строят ITER неподалёку от Марселя (Франция) с 2007 года и сейчас, в 2019-м, его уже заканчивают. Сердце проекта – это токамак внешним диаметром 19 метров. Я не буду вдаваться в тонкости его конструкции – вы можете найти информацию самостоятельно. По графику работ первую плазму в токамаке ITER получат в 2025 году, а первую управляемую термоядерную реакцию с выделением энергии проведут лишь в 2035-м, когда эту книгу или благополучно забудут, или будут проходить в школах.
Но как приятно думать о том, что главным элементом такого крупного международного проекта – в нём задействовано 35 стран – стало советское изобретение!