Изучаем Python — страница 25 из 61


Классы могут использоваться для моделирования многих реальных ситуаций. После того как класс будет написан, разработчик проводит бульшую часть времени за работой с экземплярами, созданными на основе этого класса. Одной из первых задач станет изменение атрибутов, связанных с конкретным экземпляром. Атрибуты экземпляра можно изменять напрямую или же написать методы, изменяющие атрибуты по особым правилам.

Класс Car


Напишем класс, представляющий автомобиль. Этот класс будет содержать информацию о типе машины, а также метод для вывода краткого описания:

car.py

class Car():

. ."""Простая модель автомобиля."""

(1) . .def __init__(self, make, model, year):

. . . ."""Инициализирует атрибуты описания автомобиля."""

. . . .self.make = make

. . . .self.model = model

. . . .self.year = year

. . . .

(2) . .def get_descriptive_name(self):

. . . ."""Возвращает аккуратно отформатированное описание."""

. . . .long_name = str(self.year) + ' ' + self.make + ' ' + self.model

. . . .return long_name.title()

. .

(3)my_new_car = Car('audi', 'a4', 2016)

print(my_new_car.get_descriptive_name())

В точке (1) в классе Car определяется метод __init__(); его список параметров начинается с self, как и в классе Dog. За ним следуют еще три параметра: make, model и year. Метод __init__() получает эти параметры и сохраняет их в атрибутах, которые будут связаны с экземплярами, созданными на основе класса. При создании нового экземпляра Car необходимо указать фирму-производителя, модель и год выпуска для данного экземпляра.

В точке (2) определяется метод get_descriptive_name(), который объединяет год выпуска, фирму-производителя и модель в одну строку с описанием. Это избавит вас от необходимости выводить значение каждого атрибута по отдельности. Для работы со значениями атрибутов в этом методе используется синтаксис self.make, self.model и self.year.

В точке (3) создается экземпляр класса Car, который сохраняется в переменной my_new_car. Затем вызов метода get_descriptive_name() показывает, с какой машиной работает программа:

2016 Audi A4

Чтобы класс был более интересным, добавим атрибут, изменяющийся со временем, — в нем будет храниться пробег машины в милях.

Назначение атрибуту значения по умолчанию


Каждый атрибут класса должен иметь исходное значение, даже если оно равно 0 или пустой строке. В некоторых случаях (например, при задании значений по умолчанию) это исходное значение есть смысл задавать в теле метода __init__(); в таком случае передавать параметр для этого атрибута при создании объекта не обязательно.

Добавим атрибут с именем odometer_reading, исходное значение которого всегда равно 0. Также в класс будет включен метод read_odometer() для чтения текущих показаний одометра:

class Car():


def __init__(self, make, model, year):

"""Инициализирует атрибуты описания автомобиля."""

self.make = make

self.model = model

self.year = year

(1) . . . .self.odometer_reading = 0

. . . .

def get_descriptive_name(self):

...

. .

(2) . .def read_odometer(self):

. . . ."""Выводит пробег машины в милях."""

. . . .print("This car has " + str(self.odometer_reading) + " miles on it.")

. .

my_new_car = Car('audi', 'a4', 2016)

print(my_new_car.get_descriptive_name())

my_new_car.read_odometer()

Когда Python вызывает метод __init__() для создания нового экземпляра, этот метод сохраняет фирму-производителя, модель и год выпуска в атрибутах, как и в предыдущем случае. Затем Python создает новый атрибут с именем odometer_reading и присваивает ему исходное значение 0 (1) . Также в класс добавляется новый метод read_odometer() (2), который упрощает чтение пробега машины в милях.

Сразу же после создания машины ее пробег равен 0:

2016 Audi A4

This car has 0 miles on it.

Впрочем, у продаваемых машин одометр редко показывает ровно 0, поэтому нам понадобится способ изменения значения этого атрибута.

Изменение значений атрибутов


Значение атрибута можно изменить одним из трех способов: изменить его прямо в экземпляре, задать значение при помощи метода или изменить его с приращением (то есть прибавлением определенной величины) при помощи метода. Рассмотрим все эти способы.

Прямое изменение значения атрибута


Чтобы изменить значение атрибута, проще всего обратиться к нему прямо через экземпляр. В следующем примере на одометре напрямую выставляется значение 23:

class Car():

...


my_new_car = Car('audi', 'a4', 2016)

print(my_new_car.get_descriptive_name())


(1) my_new_car.odometer_reading = 23

my_new_car.read_odometer()

В точке (1) точечная запись используется для обращения к атрибуту odometer_reading экземпляра и прямого присваивания его значения. Эта строка приказывает Python взять экземпляр my_new_car, найти связанный с ним атрибут odometer_reading и задать значение атрибута равным 23:

2016 Audi A4

This car has 23 miles on it.

Иногда подобные прямые обращения к атрибутам допустимы, но чаще разработчик пишет вспомогательный метод, который изменяет значение за него.

Изменение значения атрибута с использованием метода


В класс можно включить методы, которые изменяют некоторые атрибуты за вас. Вместо того чтобы изменять атрибут напрямую, вы передаете новое значение методу, который берет обновление атрибута на себя.

В следующем примере в класс включается метод update_odometer() для изменения показаний одометра:

class Car():

. ....

. . . .

(1) . .def update_odometer(self, mileage):

. . . ."""Устанавливает заданное значение на одометре."""

. . . .self.odometer_reading = mileage

. .

my_new_car = Car('audi', 'a4', 2016)

print(my_new_car.get_descriptive_name())


(2)my_new_car.update_odometer(23)

my_new_car.read_odometer()

Класс Car почти не изменился, в нем только добавился метод update_odometer()(1) . Этот метод получает пробег в милях и сохраняет его в self.odometer_reading. В точке (2) мы вызываем метод update_odometer() и передаем ему значение 23 в аргументе (соответствующем параметру mileage в определении метода). Метод устанавливает на одометре значение 23, а метод read_odometer() выводит текущие показания:

2016 Audi A4

This car has 23 miles on it.

Метод update_odometer() можно расширить так, чтобы при каждом изменении показаний одометра выполнялась некоторая дополнительная работа. Добавим проверку, которая гарантирует, что никто не будет пытаться сбрасывать показания одометра:

class Car():

. ....


. .def update_odometer(self, mileage):

. . . ."""

. . . .Устанавливает на одометре заданное значение.

. . . .При попытке обратной подкрутки изменение отклоняется.

. . . ."""

(1) . . . .if mileage >= self.odometer_reading:

. . . . . .self.odometer_reading = mileage

. . . .else:

(2) . . . . . .print("You can't roll back an odometer!")

Теперь update_odometer() проверяет новое значение перед изменением атрибута. Если новое значение mileage больше или равно текущего, self.odometer_reading, показания одометра можно обновить новым значением (1) . Если же новое значение меньше текущего, вы получите предупреждение о недопустимости обратной подкрутки (2).

Изменение значения атрибута с приращением


Иногда значение атрибута требуется изменить с заданным приращением (вместо того чтобы присваивать атрибуту произвольное новое значение). Допустим, вы купили подержанную машину и проехали на ней 100 миль. Следующий метод получает величину приращения и прибавляет ее к текущим показаниям одометра:

class Car():

...


def update_odometer(self, mileage):

--snip--

. .

(1) . .def increment_odometer(self, miles):

. . . ."""Увеличивает показания одометра с заданным приращением."""

. . . .self.odometer_reading += miles

. .

(2)my_used_car = Car('subaru', 'outback', 2013)

print(my_used_car.get_descriptive_name())


(3)my_used_car.update_odometer(23500)

my_used_car.read_odometer()


(4)my_used_car.increment_odometer(100)

my_used_car.read_odometer()

Новый метод increment_odometer() в точке (1) получает расстояние в милях и прибавляет его к self.odometer_reading. В точке (2) создается экземпляр my_used_car. Мы инициализируем показания его одометра значением 23 500; для этого вызывается метод update_odometer(), которому передается значение 23500 (3). В точке (4) вызывается метод increment_odometer(), которому передается значение 100, чтобы увеличить показания одометра на 100 миль, пройденные с момента покупки:

2013 Subaru Outback

This car has 23500 miles on it.

This car has 23600 miles on it.

При желании можно легко усовершенствовать этот метод, чтобы он отклонял отрицательные приращения; тем самым вы предотвратите обратную подкрутку одометра.

примечание

Подобные методы управляют обновлением внутренних значений экземпляров (таких, как показания одометра), однако любой пользователь, имеющий доступ к программному коду, сможет напрямую задать атрибуту любое значение. Эффективная схема безопасности должна уделять особое внимание таким подробностям, не ограничиваясь простейшими проверками.

Упражнения

9-4. Посетители: начните с программы из упражнения 9-1 (с. 165). Добавьте атрибут number_served со значением по умолчанию 0; он представляет количество обслуженных посетителей. Создайте экземпляр с именем restaurant. Выведите значение number_served, потом измените и выведите снова.

Добавьте метод с именем set_number_served(), позволяющий задать количество обслуженных посетителей. Вызовите метод с новым числом, снова выведите значение.

Добавьте метод с именем increment_number_served(), который увеличивает количество обслуженных посетителей на заданную величину. Вызовите этот метод с любым числом, которое могло бы представлять количество обслуженных клиентов — скажем, за один день.

9-5. Попытки входа: добавьте атрибут login_attempts в класс User из упражнения 9-3 (с. 165). Напишите метод increment_login_attempts(), увеличивающий значение login_attempts на 1. Напишите другой метод с именем reset_login_attempts(), обнуляющий значение login_attempts.

Создайте экземпляр класса User и вызовите increment_login_attempts() несколько раз. Выведите значение login_attempts, чтобы убедиться в том, что значение было изменено правильно, а затем вызовите reset_login_attempts(). Снова выведите login_attempts и убедитесь в том, что значение обнулилось.

Наследование