Как были открыты химические элементы — страница 12 из 18

РАДИОАКТИВНЫЕ ЭЛЕМЕНТЫ


Историю открытия двух радиоактивных элементов, существующих в природе, — урана и тория — мы уже описали на с. 56 и 89. Содержание этих элементов в земных минералах достаточно велико, чтобы обнаружить их присутствие без особого труда химико-аналитическим методом. Другие естественные радиоактивные элементы (полоний, радон, радий, актиний, протактиний) относятся к числу наименее распространенных на Земле. Да и встречаются они в природных объектах потому, что являются продуктами радиоактивных превращений урана и тория.

Ни химико-аналитическим, ни спектроскопическим методом перечисленные элементы конца менделеевской системы не могли быть обнаружены. Они содержались всюду, где встречались уран и торий. Все вместе в одних и тех же минералах. Но ни разу у ученых не возникало и тени подозрений, что в уране и тории присутствуют какие-то примеси. Примеси-то всегда содержались, но в количествах слишком ничтожных, чтобы поколебать чашку весов или вызвать новую спектральную линию.

Лишь благодаря открытию нового физического явления, названного радиоактивностью, ученые получили в руки метод, позволивший расширить пределы знаний о строении и свойствах вещества, а также значительно увеличить число химических элементов, охватываемых периодической системой. Уже на заре изучения этого явления было установлено, что существуют три вида излучения: α-лучи (поток ядер атомов гелия, несущих два положительных заряда), β-лучи (поток электронов с единичным отрицательным зарядом) и γ-лучи (это действительно лучи, похожие на рентгеновские).

Характерной величиной для каждого радиоактивного элемента является период полураспада, т. е. время, за которое испытывает радиоактивное превращение половина первоначального количества вещества.

ПОЛОНИЙ

Полоний был первым природным радиоактивным элементом, открытым радиометрическим методом. Еще в 1870 г. его важнейшие свойства предсказал Д. И. Менделеев. «Среди тяжелых металлов, — писал он, — можно ожидать элемента, аналогичного теллуру и с атомным весом больше, чем у висмута. Он должен обладать металлическими свойствами, давать кислоту, по составу и свойствам сходную с серной, с окислительной способностью более сильной, чем у теллуровой кислоты… Для оксида RO2 уже нельзя ожидать кислотных свойств, которые еще наблюдаются в теллуристой кислоте. Этот элемент будет образовывать металлоорганические соединения; водородистые соединения у него не будут существовать…»[10].

Через 19 лет Д. И. Менделеев существенно дополнил характеристику двителлура (как он называл неизвестный элемент). Вот сводка новых прогнозировавшихся данных: относительная атомная масса 212; способен образовывать оксид DtO3; в свободном состоянии Dt — кристаллический, легкоплавкий, труднолетучий металл серого цвета, с плотностью 9,8; металл легко окисляется до DtO2, оксид будет иметь слабые кислотные и основные свойства; гидрид двителлура если и существует, то непрочен; Dt должен давать сплавы с другими металлами.

Позже вы сами убедитесь в том, прав или не прав был Д. И. Менделеев в своих предсказаниях свойств тяжелого аналога теллура. В истории же полония это предсказание если и проявилось, то лишь косвенным образом. Открытие полония (а затем и радия) оказалось важнейшей вехой в развитии учения о радиоактивности, давшей импульс его развитию.

Как можно судить по лабораторным записям М. и П. Кюри, изучение ими лучей Беккереля, или урановых лучей, началось 16 декабря 1897 г. Сначала этим занималась лишь Мария, а 5 февраля 1898 г. к ней присоединился Пьер. Он проводил измерения и обрабатывал полученные результаты. В основном работа заключалась в измерении интенсивности излучения самых разнообразных урановых минералов и солей, а также металлического урана. После большой серии опытов последовал вывод: наименьшая активность присуща соединениям урана, она возрастает у металла и достигает максимума для урановой смоляной руды. Но из этой шкалы активностей вытекал и другой вывод: в урановой руде, вероятно, содержится элемент, гораздо более активный, чем уран.

Уже 12 апреля «Доклады Парижской Академии наук» опубликовали статью М. и П. Кюри, в которой содержалось это предположение. А 14 апреля М. и П. Кюри, пригласив на помощь химика Ж. Бемона, начали искать неизвестный элемент. К середине июля ученым удалось закончить анализ урановой смолки. Они тщательно измеряли активность каждого последовательно выделенного из нее продукта. Особое внимание исследователей привлекла фракция, содержащая соли висмута. Оказалось, что она испускает лучи, которые в 400 раз интенсивнее, чем металлический уран. Если неизвестный элемент действительно существовал, то он должен был присутствовать именно в этой фракции.

И вот 18 июля М. и П. Кюри выступают на заседании Парижской Академии наук с докладом «О новом радиоактивном веществе, содержащемся в смоляной обманке». Из обманки, сообщали ученые, было извлечено очень активное сернистое соединение металла, который еще никем не был описан. Он является соседом висмута по своим аналитическим свойствам. Если существование нового простого тела подтвердится, продолжали супруги Кюри, мы предлагаем назвать его полонием, по имени родины одного из нас. В честь Польши, где родилась и провела свои детские годы Мария Склодовская.

М. Кюри

Ученые отмечали далее, что открытие элемента свершилось благодаря новому способу исследования (в этом сообщении впервые было произнесено слово «радиоактивность», ставшее общепринятым).

Когда-то метод спектрального анализа позволил высказать суждение о существовании в природных объектах элементов, которые еще нельзя было ни разглядеть, ни пощупать, ни взвесить. Теперь история повторялась, но в роли сигнализатора выступили радиоактивные излучения, которые могли быть измерены с помощью радиометрического метода. Однако результаты, полученные М. и П. Кюри, не были безупречными. Неверно их предположение о химическом сходстве полония с висмутом. Уже беглый взгляд на периодическую систему показывал, что существование тяжелого аналога висмута более чем сомнительно. Но ведь не надо забывать, что они не выделили металла в чистом виде, не могли определить его относительную атомную массу, наконец, не увидели различий в спектрах висмута и полония. Поэтому вероятную аналогию полония с теллуром они фактически оставляли без внимания.

В этом свете дата «18 июля 1898 г.» выглядит лишь как предварительная в истории открытия полония, ибо элементу еще долго придется бороться за свое утверждение. Изучать полоний мешала сильная активность его излучения. Оказалось, что она обусловлена исключительно α-частицами, а β-лучи и γ-лучи отсутствовали совершенно. Удивительным казалось, что активность полония уменьшается с течением времени, притом довольно заметно: ведь этой особенности не наблюдалось у тория и урана. Поэтому кое-кто из ученых вообще поставил под сомнение существование полония. Это самый обычный висмут, в котором содержатся ничтожные примеси радиоактивных веществ, полагали скептики.

Но в 1902 г. немецкий химик В. Марквальд из двух тонн урановой руды выделил висмутовую фракцию. Поместив в раствор хлорида висмута висмутовый стержень, В. Марквальд наблюдал, что на нем отлагается сильно радиоактивное вещество, которое он принял за новый элемент и назвал радиотеллуром. Позже он в таких словах вспоминал об этом событии: «Я назвал это вещество „радиотеллуром“ временно, поскольку все химические свойства требовали того, чтобы его поместить в шестой группе на еще не занятое место элемента с несколько бóльшим атомным весом, чем вес висмута… Элемент является более электроотрицательным, чем висмут, но более электроположительным, чем теллур; также его окись должна иметь скорее основные, чем кислотные свойства. Все это соответствует радиотеллуру… Для этого вещества можно было бы ожидать атомный вес около 210»[11]. А еще позднее В. Марквальд прямо подчеркивал, что путь для выделения полония ему подсказала периодическая система.

Что же касается прежнего полония, то В. Марквальд поспешил объявить его смесью нескольких радиоэлементов. Создавшаяся ситуация вызвала оживленную дискуссию по поводу действительной природы полония и радиотеллура. Большинство ученых выступали в поддержку М. и П. Кюри. Последующее сопоставление обоих элементов привело к выводу об их идентичности. Приоритет остался за супругами Кюри, равно как сохранилось и название «полоний».

Хотя полоний был первым из новых естественных радиоэлементов, его символ Ро долгое время не располагался в соответствующей клетке периодической системы Д. И. Менделеева. Очень трудно было измерить атомную массу элемента. В 1910 г. удалось достоверно установить линии, принадлежащие спектру полония. Лишь в 1912 г. символ Ро занял, наконец, принадлежащее ему место в периодической системе.

Почти полвека ученые могли работать лишь с теми или иными количествами (чаще весьма малыми) его соединений. Только в 1946 г. удалось получить чистый металл. Плотные слои металлического полония, приготовленные методом возгонки в вакууме, имеют серебристый цвет. Полоний — металл мягкий и легкоплавкий (темп. пл. 254°C, темп. кип. 962°C); его плотность близка к 9,3 г/см3. При нагревании на воздухе легко образует прочный оксид, его основные и кислотные свойства проявляются слабо. Гидрид полония неустойчив. Полоний образует металлоорганические соединения и сплавы со многими металлами (Pb, Hg, Са, Zn, Na, Pt, Ag, Ni, Be). Сравнивая эти современные данные с предсказаниями Д. И. Менделеева, легко убедиться, насколько ученый был недалек от истины.

РАДИЙ

В ходе анализа смоляной обманки супруги М. и П. Кюри и Ж. Бемон заметили, что наряду с висмутовой еще одна фракция проявляет повышенную активность. После успешного окончания опытов по выделению полония они начали исследовать и эту фракцию, полагая, что она также может содержать неизвестный радиоактивный элемент.

Днем рождения радия (так был назван новый элемент, — от латинского слова, означающего «испускаю лучи») стало 26 декабря, когда собравшиеся на заседание члены Парижской Академии наук услышали доклад под названием «О новом сильнорадиоактивном веществе, содержащемся в смоляной обманке». Ученые сообщали, что им удалось выделить из урановых отходов вещество, которое содержит новый элемент, по своим свойствам очень похожий на барий. Количество радия, содержащегося в хлориде бария, оказалось достаточным для определения его спектра. Это сделал известный французский спектроскопист Э. Демарсе. Он установил присутствие новой спектральной линии. Так существование нового радиоактивного элемента радия было подтверждено почти одновременно двумя методами: радиометрическим и спектральным.

Из всех природных радиоактивных элементов (торий и уран, по понятным причинам, не в счет) радий сразу оказался в выгодном положении. Это объяснялось многими обстоятельствами. Как вскоре выяснилось, период полураспада радия был довольно велик — 1600 лет. По сравнению с полонием его содержание в урановых рудах гораздо выше (в 4300 раз); это создавало условия для естественного накопления радия. Далее, радий достаточно интенсивно испускал а-лучи, поэтому легко было контролировать его поведение в различных химических операциях. И была у него, наконец, та особенность, что он испускал радиоактивный газ, называемый эманацией (см. с. 153). Удачное сочетание различных свойств сделало радий удобным объектом изучения, и благодаря этому он стал первым радиоактивным элементом (опять же, исключая уран и торий), который вскоре и навсегда нашел свое место в периодической системе. Во-первых, химические и спектральные исследования радия показали, что он по всем статьям принадлежит к подгруппе щелочноземельных металлов; во-вторых, удалось достаточно точно определить его относительную атомную массу. Для этого потребовалось получить препарат радия в весовых количествах.

В течение 45 месяцев в плохо оборудованной лаборатории, не считаясь со временем, М. и П. Кюри перерабатывали тонны отходов, оставшихся после выделения урана. Отходы были получены ими из Иоахимстальских заводов в Богемии. Около десяти тысяч дробных кристаллизаций пришлось провести ученым, чтобы отделить сопутствующие радию элементы. В итоге же они стали обладателями бесценного сокровища — 0,1 г хлорида радия. История науки еще не видела примера такого подвижнического труда. Этого количества хватило, чтобы 28 марта 1902 г. М. Кюри смогла заявить: относительная атомная масса радия равна 225,9 (значение, мало отличающееся от современного 226,02). Эта величина как раз отвечала предполагаемому месту радия в периодической системе.

Открытие радия оказалось самым достоверным на фоне открытий большого числа радиоэлементов — открытий, которые не замедлили произойти. С каждым годом их становилось все больше. И радий же оказался самым первым радиоактивным элементом, который удалось получить в виде металла.

М. Кюри со своим сотрудником А. Дебьерном произвела электролиз раствора, содержащего 0,106 г хлорида радия. Металлический радий осаждался на ртутном катоде и превращался в амальгаму. Ее помещали в железную лодочку и нагревали в струе водорода с целью отогнать амальгаму. После этого на дне лодочки заблестели крупинки серебристо-белого металла.

Событие, происшедшее в 1910 г., стало одним из величайших достижений науки. Изучение радия способствовало коренному пересмотру прежних представлений о свойствах и строении материи, возникновению понятия об атомной энергии. И наконец, радий стал опять же первым радиоактивным элементом, который нашел практическое применение (например, в медицине).

АКТИНИЙ

Только ли случай способствовал тому, что первыми ласточками среди новых радиоактивных элементов стали полоний и радий? Едва ли. Радий благодаря своему большому периоду полураспада способен накапливаться в урановых рудах. Полоний короткоживущ (138 дней), но обладает энергичным и характерным α-излучением. Хотя открытие полония и вызвало споры, все-таки все быстро встало на свои места.

Третьим в перечне успехов молодой пауки о радиоактивности оказался актиний. Вскоре после открытия радия М. и П. Кюри высказали предположение, что в урановой руде могут скрываться и другие, еще неизвестные радиоактивные элементы. Проверить это они поручили своему сотруднику А. Дебьерну.

Исходным сырьем А. Дебьерну послужили несколько сот килограммов руды. В течение нескольких месяцев он выделял из нее «активное начало». После того как были отделены уран, радий, полоний, осталось немного вещества, активность которого значительно превосходила (примерно в 100 000 раз) активность урана. Первоначально А. Дебьерн сделал вывод, что носитель активности похож на титан по своим химическим свойствам. Затем он отверг эту аналогию и предположил сходство с торием. После этого А. Дебьерн весной 1899 г. провозгласил открытие нового элемента, предложив для него название «актиний». Оно происходило от греческого слова, означающего «излучение».

Дата 1899 г. вошла во все учебники, справочники, монографии и энциклопедии — словом, всюду, где в тексте упоминается об открытии актиния. Но в действительности заявлять, что А. Дебьерн открыл в этом году новый радиоактивный элемент — актиний, — значит, закрывать глаза на явные несоответствия.

Настоящий актиний мало чем похож на торий, но не это химическое различие является аргументом против открытия актиния А. Дебьерном. Главное возражение состоит вот в чем. А. Дебьерн полагал, что его актиний α-активен и в 100 000 раз интенсивнее урана испускает α-частицы. Теперь известно, что актиний — мягкий β-излучатель, т. е. он испускает β-частицы невысокой энергии, и зафиксировать их не так-то просто. А. Дебьерну же с его примитивной радиометрической техникой, это вообще было не под силу.

Что же тогда открыл А. Дебьерн на самом деле? Сложную смесь радиоактивных веществ, среди которых присутствовал и актиний. Но его слабое β-излучение было совершенно неразличимо на фоне α-частиц, испускаемых продуктами радиоактивного распада актиния. Понадобилось несколько лет, чтобы выделить действительный актиний из этой смеси радиоактивных продуктов.

В 1911 г. выдающийся английский радиохимик Ф. Содди написал книгу «Химия радиоэлементов». В ней он характеризовал актиний как почти неизученный элемент. «Атомный вес неизвестен, средняя продолжительность жизни неизвестна, характер излучения — лучей не испускает (вот сколь трудно было уловить β-излучение актиния. — Авт.), материнское вещество неизвестно…»[12]. Словом, очень многое в актинии было туманно.

Аргументы А. Дебьерна в пользу открытия актиния современникам не показались убедительными. И не мудрено, что вскоре появился еще один претендент на открытие нового радиоактивного элемента — немецкий химик Ф. Гизель. Он также выделил некое радиоактивное вещество, которое было похоже по своим свойствам на редкоземельные элементы, — факт, с современных позиций уже гораздо более близкий к истине. Ф. Гизель назвал новый элемент эманием, потому что он выделял радиоактивный газ — эманацию, вызывавшую свечение экрана из сульфида цинка. Наряду с дебатами на тему «Радиотеллур или полоний» возникла дискуссия по сходному предмету «Актиний или эманий». В первом случае было доказано тождество. Второй оказался сложнее, и здесь спор не поставил все точки над «и», ибо слишком капризным оказался этот третий по счету новый радиоактивный элемент. На скрижалях истории записано имя А. Дебьерна как первооткрывателя актиния. В то же время вещество, которое выделил Ф. Гизель, как удалось показать впоследствии, состояло в значительной степени из чистого актиния. Ф. Гизелю также удалось наблюдать спектр эмания. Многие ученые считали, что им удалось доказать идентичность актиния и эмания. И постепенно проблема утратила свою остроту.

Впервые символ Ac поместил (1909) в третью группу периодической системы английский радиохимик А. Камерон (кстати, именно он предложил термин «радиохимия»). Но надежно место актиния было установлено в 1913 г. По мере того как актиний очищался от продуктов распада, выяснилась удивительная картина: его излучение оказывалось настолько слабым, что ученые даже стали сомневаться, испускает ли он лучи вообще. Предложили даже считать, что актиний испытывает совершенно новый тип превращений — безлучевое. Только в 1935 г. удалось достоверно зафиксировать испускаемые актинием β-частицы. Его период полураспада оказался равным 21,6 г.

О выделении металлического актиния долго не могло быть и речи. Ведь в 1 т смоляной обманки содержится всего 0,15 мг актиния, тогда как концентрация радия достигает 400 мг. Металл (несколько миллиграммов) приготовили лишь в 1953 г., восстанавливая AcCl3 парами калия.

РАДОН

В 86-й клетке периодической системы стоит символ Rn, отвечающий элементу радону. Он является самым тяжелым представителем плеяды благородных газов. Он сильно радиоактивен, а в природе его столь мало, что он не мог быть найден в ходе обнаружения В. Рамзаем и М. Траверсом других инертных элементов. Только радиометрический метод сумел зафиксировать существование радона.

То, что сейчас называют радоном, — это совокупное обозначение трех природных изотопов элемента № 86, которые открывали порознь и называли эманациями. С их появлением на авансцене исследований радиоактивности в ее истории наступили новые времена: ученые впервые столкнулись с газообразными радиоактивными веществами.

В начале 1899 г. Э. Резерфорд, работавший в то время в Канаде, и его сотрудник Р. Оуэнс исследовали активность соединений тория. Однажды произошло незначительное на первый взгляд событие. Р. Оуэнс распахнул дверь в лабораторию, где ставили очередной опыт, по комнате пронеслось дуновение воздуха, и ученые заметили, что интенсивность излучения ториевого препарата вдруг резко упала. Поначалу исследователи не придали этому событию никакого значения, но потом убедились, что легкое дуновение всякий раз словно бы лишает торий большей части его активности.

Э. Резерфорд и Р. Оуэнс пришли к выводу, что торий постоянно испускает какое-то газообразное радиоактивное вещество. Они назвали его эманацией (от латинского слова, означающего «истечение») тория или тороном.

По аналогии возникла идея, что и другие радиоактивные элементы способны выделять эманации. В 1900 г. немецкий физик Э. Дорн открыл эманацию радия, а спустя три года А. Дебьерн наблюдал эманацию актиния. Так появились на свет еще два радиоэлемента: радон и актинон. Выяснилось важное обстоятельство, что все три эманации различаются лишь по периодам полураспада: у торона он равен 51,5 с, у радона — 3,8 дня, у актинона — 3,02 с. Самый долгоживущий — радон, поэтому все исследования природы эманаций проводили с этим радиоактивным веществом. Во всем остальном эманации ничем не отличались друг от друга. И все они не обладали химическими свойствами, т. е. были инертными газами (аналогами аргона и его спутников). Как выяснилось позже, они различались и по величине атомных масс. Но в периодической системе для этих трех элементов имелось одно-единственное место в нулевой группе, под ксеноном.

Подобное исключительное положение скоро стало правилом. Поэтому здесь придется коснуться некоторых важных событий на пути развития учения о радиоактивности. Закончим лишь рассказ о радоне. Это название осталось потому, что именно радон наиболее долгоживущий из всех радиоактивных инертных газов. Одно время для него предлагали имя «нитон» (В. Рамзай), по-латыни — «светящийся», но оно не привилось в науке.

РАДИОЭЛЕМЕНТЫ И ИХ СЕМЕЙСТВА

Накануне открытия полония и радия в периодической системе в промежутке между висмутом и ураном насчитывалось семь пустых мест. И пока число вновь открытых радиоактивных элементов было невелико, никаких затруднений с их размещением в менделеевской таблице не возникало. Настораживали эманации. Они имели идентичные свойства, и поэтому их нельзя было расставить по разным клеткам периодической системы, например разместив две из них на пустых местах, соответствовавших неизвестным тяжелым аналогам иода и цезия. Такая операция явилась бы противоестественной.

Но если даже оставить в покое непонятное семейство радона, то и без этого имелись неясности. В 1900 г. В. Крукс обнаружил странное явление. Проведя дробную кристаллизацию уранового соединения, он получил фильтрат и осадок. Уран находился в растворе, но никакой активности обнаружить в нем не удавалось. Напротив, осадок не содержал урана, зато интенсивно излучал. Отсюда В. Крукс сделал парадоксальный вывод: сам уран не радиоактивен, а делает его радиоактивным некая примесь, которую ему (Круксу) и удалось отделить от урана. Словно предчувствуя недоброе, ученый не дал этой примеси какого-либо определенного названия, а стал ее именовать уран-«икс» (UX). Потом выяснилось, что уран, освобожденный от UX, восстанавливает свою активность. Просто UX — гораздо более сильный излучатель. Но в таком случае правомерно рассматривать его в качестве нового радиоактивного элемента.

Спустя два года Э. Резерфорд и Ф. Содди обнаружили такое же временное исчезновение активности у тория. Примесь (опять же по аналогии) получила название торий-«икс» (ThX). Эти ученые пытались разрешить вопрос фундаментальной важности: что происходит с радиоактивным элементом в результате испускания им радиоактивного излучения? Остается его химическая природа неизменной или же меняется? Им удалось сделать ценное наблюдение: эманация тория порождалась не самим торием, а ThX. Иначе говоря, они выявили первую цепочку радиоактивных превращений:

Th→ThX→EmTh

И именно это событие послужило решающим шагом к формулировке теории радиоактивного распада.

По Э. Резерфорду и Ф. Содди, механизм радиоактивного распада заключается в том, что происходит превращение химических элементов, их естественная трансмутация. Особенно четко это удалось проследить на примере радия, который, испуская α-частицу, превращался в радон. Несколько позже выяснилось, что α-частица представляет собой дважды ионизированный атом гелия. В результате распада радия рождались два других элемента — радон и гелий:

Ra→Rn+He

Спустя короткое время это явление экспериментально подтвердили В. Рамзай и Ф. Содди.

Все известные радиоактивные элементы, рассуждали далее Э. Резерфорд и Ф. Содди, не являются совершенно изолированными, а генетически связаны друг с другом (последовательно превращаются один в другой). Они образуют как бы три радиоактивных семейства: урановое, ториевое и радиевое, названные так по имени исходного элемента — родоначальника семейства. Оставалось неясным многое: сколько радиоактивных веществ входит в семейство? Какими элементами заканчиваются эти семейства? И наконец, что же это за «материальное образование» — радиоактивный элемент, какова его истинная природа?

Последний вопрос не является надуманным, ибо начиная с первых лет XX в. число радиоактивных веществ стало стремительно возрастать и проблема их размещения в периодической системе сделалась чрезвычайно актуальной.

Как только не называли ученые новые вещества, обладающие свойствами радиоактивности: и радиоактивными телами, и активностями, и радиоактивными элементами. Было видно, что наука столкнулась с неведомыми раньше материальными образованиями. Существование большинства из них удавалось установить лишь по радиоактивным характеристикам: интенсивности излучения, типу распада, величине периода полураспада. В то же время ничего или почти ничего нельзя было сказать относительно их химической природы. Ведь прежняя классическая химия элементов была связана с весовыми количествами веществ, когда новый элемент (или его соединение) можно было выделить в материальной форме, изучить его реакции, наблюдать спектр. Для большинства открываемых радиоактивных элементов все это было недосягаемо. А потому резонным казался вопрос: да элементы ли они, в химическом понимании этого слова?

Мнения пионеров исследования радиоактивности здесь разделились. М. и П. Кюри и А. Дебьерн предполагали, что все новые радиоактивные вещества имеют элементарную природу и, следовательно, являются новыми химическими элементами. Обнаружение полония, радия и актиния, казалось бы, подкрепляло такую позицию, и названные ученые поначалу не склонны были менять свою точку зрения, даже когда радиоактивные вещества стали открывать во множестве. Но подобное упорство вело лишь к противоречиям.

Иных соображений придерживались Э. Резерфорд и Ф. Содди. Они считали, что радиоактивные вещества могут иметь различную природу. Опираясь на свои представления о радиоактивных семействах, они рассуждали так: существуют относительно устойчивые радиоактивные элементы — родоначальники рядов, т. е. уран, торий и радий. Их химическая природа известна, поэтому они могут быть причислены к обыкновенным элементам, отличаясь от последних лишь свойством радиоактивности. Элементы, замыкающие радиоактивные семейства, суть устойчивые, обычные элементы (уже появлялись смутные догадки, что завершать радиоактивные семейства должен свинец). Между этими двумя сортами атомов, рассуждали далее Э. Резерфорд и Ф. Содди, существуют промежуточные вещества, основная черта которых — неустойчивость, их нельзя охарактеризовать с точки зрения химии. Они не есть элементы в обычном понимании, они лишь своеобразные атомы — осколки. Для них было предложено название «метаболоны» (от греческих слов, означающих «превращающиеся тела»). А потому вопрос о размещении метаболонов в периодической системе не имел смысла.

Однако термин «метаболон» широкого использования не получил. Да и Ф. Содди вскоре решил считать метаболон такой же химической индивидуальностью, как и обычные радиоактивные элементы. На смену пришел другой термин «радиоэлемент», введенный в 1902 г. английским физиком Дж. Мартином. Этот термин (без объяснений) уже мелькал на страницах книги. Объяснение ему будет дано дальше. Здесь лишь четко подчеркнем, что ни в коем случае нельзя ставить знака равенства между понятиями «радиоактивный элемент» и «радиоэлемент», хотя в литературе иногда встречается путаница в использовании этих терминов.

По сути дела, вся история радиохимии первых двух десятилетий XX в. — это поиск новых радиоэлементов и выяснение их генетической связи с другими, уже открытыми. Все более четкие контуры приобретали радиоактивные семейства, и они становились своеобразными систематиками радиоэлементов, подобно тому как периодическая система была систематикой элементов стабильных. Бывшее радиевое семейство оказалось составным фрагментом уранового, зато сформировалось новое, актиниевое семейство, определить родоначальника которого долгое время не удавалось (вопрос фактически решился только в 1935 г.). Большинство радиоэлементов являлись короткоживущими продуктами, чьи периоды полураспада измерялись секундами и (в лучшем случае) минутами. Расшифровка их химической природы и установление места в радиоактивных семействах представляли собой труднейшую задачу: ни с чем, даже отдаленно подобным, химики раньше не встречались, даже при проведении утомительных и однообразных процессов разделения редкоземельных элементов. Чтобы рассказать об этом подробно, пришлось бы написать целую книгу. Поэтому мы вынуждены ограничиться лишь сводными хронологическими таблицами открытий радиоэлементов (см. табл. 13).


Таблица 1

Радиоактивное семейство урана-238
Название радиоэлементаГод открытияАвторы открытий
Уран-I1896[13]А. Беккерель
Уран-X11900В. Крукс
Уран-Х21913К. Фаянс, 0. Гёринг
Уран-II1911Г. Гейгер, Дж. Наттол
Ионий1907Б. Болтвуд
Радий1898П. и М. Кюри, Ж. Бемон
Эманация радия1900Е. Дорн
Радий-А1903Э. Резерфорд, Г. Бэрнс
1904П. Кюри, Ж. Данн
Радий-В1903П. Кюри, Ж. Данн
Радий-С1903П. Кюри, Ж. Данн
Радий-С'1909О. Ган, Л. Мейтнер
Радий-С''1912К. Фаяцс
Радий-D (радиосвинец)1900К. Гофман, Э. Штраус
Радий-Е1904К. Гофман, Л. Гондер, В. Вельф
1905Э. Резерфорд
Радий-F (полоний)1898П. и М. Кюри

[13] Дата открытия радиоактивности урана.


Таблица 2

Радиоактивное семейство урана-235
Название радиоэлементаГод открытияАвторы открытий
Уран-235 (AcU)1935А. Демпстер
Уран-Y1911Г. Н. Антонов
Протактиний1918О. Ган, Л. Мейтнер
1918Ф. Содди, А. Кранстон
Актиний1899А. Дебьерн
1902Ф. Гизель
Радиоактиний1906О. Ган
Актиний-К1939М. Перей
Актиний-Х1900А. Дебьерн
1904Ф. Гизель
1905Т. Годлевский
Эманация актиния1902Ф. Гизель
Актиний-А1911Г. Гейгер
Актиний-В1904А. Дебьерн
Актиний-С1904Г. Брукс
Актиний-С'1908О. Ган, Л. Мейтнер
Актиний-С''1913Э. Марсден, Р. Вильсон
1914Э. Марсден, П. Перкинс


Таблица 3

Радиоактивное семейство тория-232
Название радиоэлементаГод открытияАвторы открытия
Торий1898[14]Г. Шмидт, М. Кюри
Мезоторий-I1907О. Ган
Мезоторий-II1908О. Ган
Радиоторий1905О. Ган
Торий-Х1902Э. Резерфорд, Ф. Содди
Эманация тория1899Э. Резерфорд
Торий-А1910Г. Гейгер, Э. Марсден
Торий-В1899Э. Резерфорд
Торий-С1903Э. Резерфорд
Торий-С'1909О. Ган, Л. Мейтнер
Торий-С''1906О. Ган

[14] Дата открытия радиоактивности тория.


Современный вид трех радиоактивных семейств приведен на странице 159.

Радиоактивные ряды урана-238, урана-235, тория-232.

Радиоактивные семейства разделяются каждое на две характерные части. Радиоэлементы, предшествующие эманациям, являются сравнительно долгоживущими; напротив, радиоэлементы, следующие за эманациями, имеют очень малые периоды полураспада. Для их обозначения даже была выработана специальная номенклатура, использующая латинские буквы А, В и С рядом с символами соответствующих элементов (Ra, Th, Ac). Совокупности этих недолговечных радиоэлементов называли активными осадками; они-то и представили наибольшие трудности для исследования и послужили причиной многих заблуждений и ошибок. Но именно изучение активных осадков в значительной степени способствовало становлению радиохимии как новой научной дисциплины.

По мере того как радиоактивные семейства приобретали современный облик, все резче заявляла о себе необходимость рационального размещения радиоэлементов в периодической системе. Ведь в конечном счете каждый из них обнаруживал химическое сходство с тем или иным «обычным» элементом, занимающим определенную клетку в таблице. Но радиоэлементов было слишком много. В. Рамзай определил ситуацию французским выражением embarras en richess (теснота вследствие изобилия)[15]. Ведь около 40 радиоэлементов стало известно в начале второго десятилетия нашего века. И среди них наблюдалось несколько совокупностей радиоэлементов, которые были настолько близки по химическим свойствам, что разделить их не удавалось никакими из существующих методов. Например, все три эманации, а также торий, ионий, радиоторий, или, наконец, радий и торий-Х.

Между тем радиоэлементы каждой из таких совокупностей заметно различались по атомным массам, порой на несколько единиц. Такое положение вещей рождало растерянность. Некоторые ученые предлагали оставлять многие радиоэлементы вообще вне менделеевской таблицы. Но творческая мысль не мирилась с этим. В 1910 г. шведские ученые Д. Стремгольм и Т. Сведберг предложили размещать по нескольку радиоэлементов в одной клетке таблицы (их правота вскоре стала очевидной). Идею шведских исследователей поддержал в 1911 г. английский радиохимик А. Камерон.

Хотя еще в 1903 г. было доказано, что радиоактивность сопровождается превращением элементов, долгое время ученые не могли сказать с полной определенностью, что именно происходит с тем или иным радиоэлементом, когда он испускает α- либо β-частицу? А ведь ответ на этот вопрос позволял представить, куда перемещается данный радиоэлемент в периодической системе в результате радиоактивного распада. Люди еще не знали, как устроен атом, и о всяких переменах в природе радиоэлемента можно было судить, сопоставляя химические свойства его и продукта его превращения. А задача часто была чрезвычайно трудной, поскольку радиохимикам приходилось оперировать с исчезающе малыми количествами веществ. Во многих случаях химический «портрет» радиоэлемента приходилось рисовать лишь по косвенным признакам.

Упорство исследователей и накопление опыта сделали свое дело: удалось сформулировать правило радиоактивных смещений. В разработке его формулировки участвовали многие ученые, но главная роль принадлежала Ф. Содди и польскому химику К. Фаянсу, поэтому его часто называют правилом Содди-Фаянса. Вот в чем оно заключается: при α-распаде образуется радиоэлемент, который занимает место на две клетки влево от исходного, а при β-распаде на одну клетку вправо. Когда было доказано, что заряд ядра атома равен порядковому номеру соответствующего элемента в периодической системе, эмпирическое правило стало законом радиоактивных смещений: α-частица уносит с собой два положительных заряда, и потому порядковый номер (заряд ядра) исходного элемента понижается на две единицы. Напротив, вылет β-частицы означает повышение положительного заряда ядра на единицу.

Закон сдвига гармонично связал радиоактивные семейства с периодической системой элементов. Через несколько последовательных α- и β-распадов родоначальники семейств превращались в стабильный свинец, а по ходу дела образовывались природные радиоактивные элементы, которые в таблице Менделеева расположились между ураном и висмутом. Но получалось при этом, что каждой клетке системы соответствовало по нескольку радиоэлементов. Они имели одинаковый заряд ядра, но разную массу, т. е. они как бы являлись разновидностями данного элемента, одинаковыми по химическим свойствам и различающимися по массе и радиоактивным характеристикам. Ф. Содди в декабре 1913 г. назвал такие разновидности изотопами (от греческих слов, означающих «одинаковоместные», т. е. занимающие одно место в периодической системе).

Теперь становится понятным, что радиоэлементы не что иное, как изотопы естественных радиоактивных элементов. Три эманации — это изотопы одного радиоактивного элемента радона, занимающего 86-ю клетку периодической системы. Уран, торий, полоний, актиний — все они представлены своими изотопами в радиоактивных семействах. Потом стало ясно, что изотопы есть и у многих стабильных элементов. И вот какое интересное соображение отсюда следует. Открытие стабильного элемента означало одновременное открытие его изотопов, всей плеяды его изотопов. У природных радиоактивных элементов сначала обнаруживали отдельные изотопы. Открытие радиоэлементов и было открытием изотопов. В этом моменте состоит существенная разница между стабильными и радиоактивными элементами с точки зрения особенностей их обнаружения в природе. Немудрено, что периодической системе пришлось выдержать серьезное испытание, когда возникла необходимость размещения в ней обилия радиоэлементов. Ведь она была систематикой элементов, а не изотопов. Формулировка закона сдвига и открытие изотопии внесли существенную ясность и позволили двинуться дальше.

ПРОТАКТИНИЙ

Менделеевский экатантал едва ли не единственный пример в истории радиоактивных элементов, когда их новый представитель в действительности был открыт раньше, чем об этом говорит официальная дата его обнаружения. Речь идет об элементе с порядковым номером 91, располагающемся между торием и ураном. Его долгоживущий изотоп имеет солидный период полураспада (34 300 лет) и, следовательно, должен накапливаться в урановых рудах, да к тому же он является α-излучателем. Если взять за основу общепринятую дату его обнаружения (1918), то резонно задать вопрос: почему же он был открыт столь поздно? Ответ на вопрос в свое время последует. Пока же обратимся к таблице 1 и схемам радиоактивных семейств (см. с. 159), а именно к схеме семейства урана-238.

Знаменитый UX В. Крукса, с открытия которого, собственно, все и началось, обозначен в таблице 1 как «уран-Х1». Эта единица внизу была поставлена гораздо позже, когда был открыт радиоэлемент, помеченный как «уран-Х2».

Так вот в феврале 1913 г. Ф. Содди высказал предположение, что между круксовским UХ и открытым в 1911 г. U-II в семействе урана должен располагаться неизвестный радиоэлемент. Его свойства, по словам Ф. Содди, должны были отвечать свойствам экатантала. Этот гипотетический радиоэлемент как бы просился в пятую группу периодической системы, где, по странной прихоти природы, еще не было ни одного радиоэлемента. Строго говоря, странного здесь ничего нет. Родоначальник семейства уран-238 (или U-I) и член этого семейства U-II суть изотопы урана, причем оба являются настоящими долгожителями по своим периодам полураспада на фоне прочих радиоэлементов. Оказалось нелегким делом разглядеть уран-II на фоне урана-I. И столь же непросто было заметить предшественника U-II — гипотетический экатантал UХ2.

Наблюдение это было сделано в середине марта 1913 г. К. Фаянсом и его молодым сотрудником О. Гёрингом. Они зафиксировали новый радиоэлемент — β-излучатель с периодом полураспада 1,17 мин и свойствами, соответствующими свойствам тантала. В октябре того же года ученые четко высказались, что UX2 является новым радиоактивным элементом между торием и ураном, и предложили назвать его бревием (от греческого слова, означающего «короткоживущий»).

Символ UX2 занял место в урановом радиоактивном семействе, а символ Bv отнюдь не разместился в клетке № 91 периодической системы, хотя подтверждения его открытия поступали из Германии и Англии, и его интенсивно изучали во многих лабораториях.

Во всяком случае, нет никакого противоречия в утверждении, что элемент № 91 был открыт в 1913 г. Даже становится немного обидно за экатантал. Почему его история начинается не этой датой?

Возможно, если бы не первая мировая война, бревию повезло бы больше. Но радиохимические исследования на несколько лет прекратились, обмен информацией резко снизился. Экатанталу предстояло быть открытым вторично.

Среди трех радиоактивных семейств самым непонятным долгое время представлялось актиниевое. Какой радиоэлемент является его родоначальником? Здесь не было ясности. Если главой семейства считать актиний, то его период полураспада должен был бы быть того же порядка, как у тория и урана. Это предположение казалось маловероятным, хотя живучесть актиния никак не поддавалась точной оценке. Но, во всяком случае, по сравнению с возрастом Земли она была ничтожной.

Поскольку актиний рассматривался как родоначальник семейства, то вопрос о предшествующих ему радиоэлементах терял смысл. Это обстоятельство повлияло на задержку открытия экатантала. Существовала и другая идея: актиниевое семейство не является самостоятельным. Оно как бы отпочковывается от уранового, словно ветвь от ствола дерева. Эту версию радиохимики стали разрабатывать еще в 1913–1914 гг., в то время, когда на свет уже появился бревий. Разумных выводов не последовало, актиний продолжал возглавлять свое семейство, хотя (теперь в этом мало, кто сомневался) не по праву.

Ключом к дальнейшему развитию событий оказался открытый еще в 1911 г. (русским радиохимиком Г. Н. Антоновым в лаборатории Э. Резерфорда) радиоэлемент UY, который является изотопом тория. В урановом семействе UX1 (тоже изотоп тория), испуская β-частицы, порождает бревий (UX2).

Французский ученый А. Пикар в 1917 г. предположил, что сходная картина должна иметь место в начале семейства, именуемого пока актиниевым. Он высказал мысль, надолго опередившую свое подтверждение, что родоначальником данного семейства служит третий, еще неизвестный изотоп урана (в добавлении к U-I и U-II). Его А. Пикар назвал актиноураном. Испуская α-частицу, он превращается в UY, а этот последний в актиний. Но промежуточным продуктом здесь будет радиоэлемент, принадлежащий к пятой группе периодической системы. Иными словами, вот какую цепочку превращений видел мысленным взором А. Пикар:

Параллельно решался вопрос и с UY, место которого в радиоактивном семействе оставалось неопределенным. Столь четкая, хотя и довольно дерзкая программа напрашивалась к реализации.

В Англии очередными поисками экатантала занялись Ф. Содди и его ассистент А. Кранстон. Удача им сопутствовала, и в декабре 1917 г. они отправили в печать статью, излагавшую сведения об открытии экатантала как продукта β-распада урана-Y. Правда, данная ими характеристика экатантала была скудной в отличие от той, которая содержалась в работе немецких химиков О. Гана и Л. Мейтнер.

Случилось так, что их статью опубликовали раньше английской, хотя она и была сдана в печать позже. Но дело не в сроке публикации. О. Ган и Л. Мейтнер не только выделили новый радиоэлемент, но, насколько это было возможно, изучили его свойства, оценили величину периода полураспада и измерили длину пробега α-частиц. Немецкие и английские ученые и считаются соавторами открытия элемента № 91, хотя вклад первых, несомненно, был более весом. История его открытия завершилась благородным поступком. К. Фаянс, ничуть не претендуя на приоритет открытия экатантала (хотя имел на это все права), лишь предложил изменить название «бревий» на «протактиний» (по-гречески — «предшествующий актинию»), поскольку последний радиоэлемент являлся гораздо более долгоживущим изотопом.

Так символ Ра занял свое место в периодической системе. Самый долгоживущий его изотоп имеет массовое число 231. В 1927 г. удалось выделить несколько миллиграммов чистого Pa2O5.

ФРАНЦИЙ

Элемент № 87 в истории открытия радиоактивных элементов занимает особое место. Хотя его природное содержание исчезающе мало, он все-таки первоначально был открыт именно в природных объектах. Но рассказ о нем мы продолжим в разделе, посвященном синтезированным элементам. Это оправдано по многим причинам.

И тем самым мы заканчиваем первую часть нашей книги.

ЧАСТЬ ВТОРАЯ.