Как информация управляет миром — страница 25 из 35

о Моцарт был австрийцем, было бы неправильно считать, что все жители развитой страны достойны доверия только потому, что развитые страны характеризуются более высоким уровнем доверия. В большинстве случаев различия между индивидами значительнее, чем различия между группами. Не следует ощущать себя достойным или недостойным доверия только потому, что вы живете в развитой или развивающейся стране, исходя из предыдущего обсуждения. На индивидуальном уровне людям следует сосредоточиться на действиях, поскольку действия индивида значат гораздо больше, чем слова и категории.

* * *

Вот мы и подошли к концу III части. В следующих главах мы перейдем к обсуждению мира, характеризующегося фрагментированными сетями с ограниченной способностью к накоплению ноу-хау и знаний. Это поможет нам понять эмпирические модели промышленного развития, которые можно наблюдать в данных межнациональной торговли и внутренних данных, а также позволит нам объединить эти промышленные структуры с экономическим ростом.

В итоге информация продолжает накапливаться в нашем обществе по мере того, как мы развиваем способность производить новые продукты, которые представляют собой пакеты информации. Тем не менее для производства этих продуктов нам необходимо накапливать знания и ноу-хау в сетях, состоящих из отдельных индивидов. Предыдущие три главы показали нам, почему мы должны фрагментировать знания и ноу-хау (теория челобайта), а также описали экономические и социальные ограничения, которые сдерживают нашу способность формировать сети, в которых мы накапливаем эти знания и ноу-хау. Как мы увидим в части I V, экономические, социальные и индивидуальные ограничения, влияющие на нашу способность накапливать знания и ноу-хау, ограничивают нашу способность создавать продукты и в итоге объясняют различия в уровне экономического развития разных стран. Более процветающими являются те страны, которым лучше удается накапливать информацию.

Часть IVСложность экономики

Без знаний и ноу-хау нашему виду трудно было бы обеспечить рост объема информации. Знания и ноу-хау определяют, что и как мы делаем. Они являются программным обеспечением, которое определяет работу социального компьютера, создающего наши города и объекты. Однако, будучи своеобразной формой программного обеспечения, знания и ноу-хау заключены в оборудовании, которое выполняет эти программы. Как мы видели, к этому оборудованию относятся люди, чьи способности усилены машинами и, конечно, состоящие из людей сети. Хотя наши тела и общественные организации дают нам возможность аккумулировать знания и ноу-хау, они также способствуют неравномерному распределению знаний и ноу-хау по всему миру. Накопление знаний и ноу-хау отличается географической предвзятостью, что обусловливает разницу в производственной способности стран. Однако различия в производственной способности стран также объясняют различия в их покупательной способности. Таким образом, для решения глобальной головоломки неравномерного распределения доходов и разницы в потреблении нам сначала нужно разобраться в глобальных механизмах, которые ограничивают распространение знаний и ноу-хау. Распространение знаний и ноу-хау объясняет разницу в способности стран производить продукты, которые, по сути, отражают различие в способности стран обеспечивать рост объема информации.

Глава 9Эволюция экономической сложности

Чем обусловлена географическая предвзятость в распространении знаний и ноу-хау? Ранее мы узнали о том, что сложность накопления знаний и ноу-хау связана с социальной и эмпирической природой процесса обучения, а также о том, что объем знаний и ноу-хау, которые может накопить индивид или фирма, ограничен. Ограниченная возможность фирм и индивидов накапливать знания и ноу-хау требует их фрагментации и распространения в сетях, состоящих из фирм и людей, которые, как мы видели, трудно сформировать. Таким образом, для накопления больших объемов знаний и ноу-хау, нам нужны крупные сети, состоящие из людей. Тем не менее отношение между размером сети и объемом знаний и ноу-хау, которые она может вместить, не только усложняет накопление знаний и ноу-хау, но и подразумевает, что переместить или копировать знания и ноу-хау, воплощенные в большой производственной сети, сложнее, чем переместить или копировать знания и ноу-хау, воплощенные в производственной сети меньшего размера.

Изучение географического распределения знаний и ноу-хау представляет сложность, поскольку знания и ноу-хау трудно «увидеть». Таким образом, чтобы изучить распределение и распространение знаний и ноу-хау, нам необходимо выявить их выражения, предоставляющие нам косвенную информацию о местах их нахождения. Один из способов заключается в том, чтобы посмотреть на географическое распределение центров промышленности, которую можно считать выражением знаний и ноу-хау, воплощенных в сетях, состоящих из людей и фирм, присутствующих в конкретном месте. Рассмотрение промышленности вместо знаний и ноу-хау аналогично тому, что делают биологи, когда рассматривают фенотипы (физические и функциональные характеристики организма) в качестве выражения генотипов (информации, воплощенной в ДНК организма). Гены, в их простейшем понимании, представляют собой сегменты ДНК, которые кодируют белки, в то время как фенотипы являются такими физическими и функциональными характеристиками организмов, как цвет волос или предрасположенность к гипертонии. В этой главе я постараюсь сделать то, что делают генетики, только вместо попытки установить связь между фенотипами и генами, я постараюсь найти связь между знаниями и ноу-хау, доступными в конкретном месте, и присутствующими в нем отраслями промышленности.

Фенотипы и генотипы являются удобной аналогией, поскольку они представляют собой пару связанных сущностей, одна из которых более доступна для наблюдения, чем другая, – фенотипы поддаются наблюдению легче, чем гены, а отрасли промышленности поддаются наблюдению легче, чем знания или ноу-хау. Эта двойственность полезна, поскольку она подразумевает возможность измерения наиболее очевидной величины в качестве заместителя наименее очевидной. Например, отображение пространственного распределения генов, отвечающих за высокий рост, в настоящее время вызывает трудности. На самом деле с ростом связаны многие гены, поэтому выявление и квантификация молекулярных последовательностей, которые могут помочь объяснить разницу в росте между Леброном Джеймсом и Дэнни ДеВито, являются не простой задачей.[133] Однако, просто взглянув на Леброна Джеймса и Дэнни ДеВито, мы легко можем сказать, кто из них с большей вероятностью является носителем генов, отвечающих за высокий рост, даже если мы точно не знаем, что это за гены. Точно так же, если нам нужно выявить наличие знаний и ноу-хау, необходимых для производства реактивных двигателей, мы можем просто посмотреть, где находятся разработчики и производители реактивных двигателей. Проще говоря, мы можем предположить, что Лос-Анджелес, а не Кито, обладает избытком знаний и ноу-хау, необходимых для производства боевиков, поскольку каждый год в Лос-Анджелесе создается множество популярных боевиков, а в Кито – совсем мало, если вообще создаются. Таким образом, хотя наличие отраслей промышленности не говорит нам о специфических наборах знаний и ноу-хау, требующихся для создания фильмов, оно может указать нам на физическое расположение сетей, содержащих эти знания и ноу-хау.[134]

Получить точные данные о месте нахождения отраслей промышленности нелегко, но возможно. Несовершенные выражения международных связей между промышленностью и местонахождением производств воплощены в торговых данных, отражающих экспортируемые и импортируемые каждой страной продукты. В случае с местными экономиками эти данные можно найти в таких правительственных отчетах, как налоговое резидентство фирм, взносы людей в фонды социального страхования и перепись промышленных предприятий. Хотя по большей части такие наборы данных несовершенны и ограничены, они представляют собой один из лучших источников, которые мы можем использовать для определения местоположения фирм, а также знаний и ноу-хау, которыми эти фирмы обладают.

Эти наборы данных полезны, поскольку показывают эмпирическую сторону, которую мы можем использовать для проверки теорий, объясняющих состав промышленного комплекса того или иного региона. Для этого нам необходимо выявить неочевидные особенности этих наборов данных (то есть те, которые нельзя объяснить случайным образом), являющиеся общими для нескольких различных наборов данных и поддающихся предсказанию, исходя из тестируемых теорий.

Поразительной особенностью, являющейся общей для данных, отражающих налоговое резидентство фирм, и данных международной торговли, является паттерн, который экологи называют вложенностью (nestedness).[135] Значение этого слова станет очевидным, если вы обратитесь к иллюстрации, показанной в следующей врезке. Вложенность представляет собой технический способ описания «треугольности» этих матриц. Формально вложенность – это одновременная тенденция к тому, чтобы (1) в наименее разнообразных в плане представленных отраслей регионах присутствовало подмножество отраслей промышленности, характерных для самых многоотраслевых регионов и чтобы (2) наименее распространенные отрасли промышленности присутствовали почти исключительно в самых многоотраслевых регионах.

Чтобы проиллюстрировать идею вложенности, рассмотрим данные экспорта Аргентины, Гондураса и Нидерландов. Из 50 продуктов, которые Гондурас экспортировал в 2008 году, Аргентина экспортировала 25 (50 %), а Нидерланды – 48 (96 %).[136] Из 227 продуктов, которые экспортировала в 2008 году Аргентина, Нидерланды экспортировали 213 (94 %). Это говорит нам о том, что экспорт Гондураса, говоря статистически, является подмножеством экспорта Аргентины, а экспорт Аргентины и Гондураса, в свою очередь, представляют собой подмножество экспорта Нидерландов. Вы можете посчитать очевидным то, что многоотраслевой район включает отрасли, присутствующие в наименее разнообразных в плане представленных отраслей регионах. Тем не менее значение вложенности, наблюдаемой в данных, статистически больше того, которое можно было бы ожидать, исходя из различий в населении или промышленности, таким образом, мы называем эти матрицы вложенными не только из-за структуры подмножеств, но и потому, что значение вложенности статистически больше того, которое можно было бы ожидать, исходя из очевидных объяснений.