Тем не менее для лучшего понимания определения «информация», сформулированного Шенноном, лучше начать с чего-нибудь более простого, чем автомобиль Bugatti. Я буду использовать в качестве примера твит. Твит – это сообщение, состоящее из 140 символов, которое используется на сервисе Twitter. Твит, как и Bugatti, представляет собой небольшой пакет информации, но, в отличие от Bugatti, он создается в качестве акта коммуникации. Тем не менее с точки зрения теории Шеннона это не имеет значения. Согласно Шеннону, информация – это минимальный объем данных для передачи любого сообщения. Будь то твит, состоящий из случайных символов, или самое остроумное сообщение, которое вы когда-либо видели, все это не имеет значения с точки зрения теории информации Шеннона.
Итак, сколько же информации содержится в твите? Чтобы представить содержимое твита в количественном выражении, рассмотрим гипотетическую игру для двух пользователей сервиса Twitter, Эбби и Брайана. В этой игре Эбби и Брайан должны угадать твиты друг друга, используя только вопросы типа «да/ нет». Для игры в эту игру у них есть книга, которая содержит все возможные твиты, которые могут быть написаны. Игра начинается тогда, когда Эбби случайным образом выбирает твит из своей книги. После этого она просит Брайана угадать ее твит, используя только вопросы типа «да/нет». Шеннон учит нас тому, что объем информации, заключенной в твите, равен минимальному количеству вопросов типа «да/нет», необходимых Брайану для того, чтобы угадать твит Эбби со стопроцентной точностью.[20] Однако каково количество этих вопросов?
Для простоты будем считать, что Эбби и Брайан используют «алфавит» из тридцати двух символов: строчных латинских букв и таких дополнительных символов, как пробел (), косая черта (/), запятая (,), точка (.), а также «собака» (@) и решетка (#). Кроме того, будем считать, что у Эбби и Брайана есть таблицы, в которых каждый символ соответствует числу (a = 1, b = 2, […], @ = 31, # = 32).
Лучшим способом угадывания твита Эбби является использование Брайаном каждого вопроса для разделения пространства поиска возможных твитов пополам. Брайан может сделать это, отгадывая сообщение Эбби символ за символом. Если Брайан решит использовать данную стратегию, то его первым вопросом типа «да/нет» будет: «Число, соответствующее первому символу, больше 16?» Если Эбби ответит отрицательно, то Брайан будет знать, что первый символ в твите Эбби расположен между буквами a и p. Имея это в виду, Брайан должен будет задать второй вопрос, который разделяет пополам оставшийся набор символов: «Число, соответствующее первому символу, больше 8?» Если Эбби ответит утвердительно, то Брайан будет знать, что первый символ сообщения Эбби расположен между числами 9 и 16 (то есть между буквами i и p). Теперь вы уже можете догадаться, что следующим вопросом Брайана будет: «Число, соответствующее первому символу, больше 12?»
Каждый заданный вопрос позволяет Брайану сократить количество возможных символов в два раза. Поскольку существует тридцать два возможных символа, Брайану потребуется задать только пять вопросов, чтобы угадать каждый символ (вам нужно разделить 32 на 2 пять раз, чтобы получить только один вариант). Наконец, поскольку твит состоит из 140 символов, Брайану потребуется 140 × 5 = 700 вопросов типа «да/нет», или битов, чтобы угадать сообщение Эбби.[21]
Теория Шеннона говорит, что нам требуется 700 бит, или вопросов типа «да/нет», для передачи твита, написанного с использованием алфавита, включающего тридцать два символа. Кроме того, теория Шеннона является основой современных систем связи. Путем количественного определения числа битов, необходимых для кодирования сообщений, он помог разработать технологии цифровой связи. Тем не менее во время разработки своей формулы Шеннон не знал о том, что его формула была идентична той, которую вывел Больцман почти за полвека до него. Прислушавшись к предложению известного венгерского математика Джона фон Неймана, Шеннон решил назвать свою меру «энтропией», поскольку формула Шеннона была эквивалентна формуле энтропии, используемой в статистической физике. (Кроме того, согласно легенде, фон Нейман сказал Шеннону, что если тот назовет свою меру энтропией, то это гарантирует его победу в любом споре, поскольку никто точно не знает, что такое энтропия.)
Однако интерпретацию понятий «энтропия» и «информация», которые появились в результате работы Шеннона, было трудно примирить с традиционным толкованием слов «информация» и «энтропия», возникшим в работе Больцмана. Конфликт между определением слова «информация», используемым Шенноном, и его разговорным значением, которое широко распространено и сегодня, легко понять, используя в качестве примера компьютеры. Подумайте о своем персональном компьютере. Будь то настольный компьютер, ноутбук или смартфон, вы используете его для хранения фотографий, документов и программного обеспечения. Вы считаете эти фотографии и документы «информацией» и, конечно, хорошо понимаете то, что эта информация хранится на жестком диске вашего устройства. Тем не менее, согласно Шеннону, если бы мы случайным образом перемешали все биты на жестком диске, удалив таким образом все ваши фотографии и документы, мы бы увеличили количество информации на жестком диске. Как это может быть? Дело в том, что определение термина «информация», предложенное Шенноном, учитывает только количество битов, необходимое для передачи сообщения о состоянии системы (в данном случае речь идет о последовательности битов, которые хранятся на вашем жестком диске). Поскольку нам требуется больше битов для создания сообщения о состоянии жесткого диска, полного случайных данных, чем о состоянии жесткого диска с фотографиями и документами, содержащими корреляции, позволяющие сжимать последовательности, определение Шеннона подразумевает то, что после перемешивания битов в случайном порядке на вашем жестком диске станет больше информации. Технически Шеннон прав, говоря о том, что нам необходимо большее количество битов для передачи сообщения о содержимом жесткого диска, наполненного случайными данными, чем о содержимом жесткого диска с фотографиями и документами. Однако теорию информации Шеннона, которая, по сути, представляет собой теорию коммуникативного инжиниринга, следует расширить, чтобы примирить ее с разговорным смыслом слова «информация» и работой Больцмана. В дополнение к работе Шеннона мне сначала нужно будет объяснить определение энтропии, которое возникло из работы Больцмана, а затем вывести определение, которое мы могли бы использовать для описания информационно насыщенных состояний, ассоциирующихся с компьютером, наполненным фотографиями и документами.
Чтобы понять разницу между определениями энтропии, используемыми Больцманом и Шенноном, рассмотрим наполовину заполненный стадион.[22] Одной важной характеристикой такого стадиона является то, что существует множество способов наполнить его наполовину, и путем исследования этих способов мы можем объяснить понятие энтропии.
Сначала мы рассмотрим случай, в котором люди могут беспрепятственно передвигаться по стадиону. При этом один из способов наполовину наполнить стадион сводится к тому, чтобы рассадить людей как можно ближе к полю, оставив все верхние ряды свободными. Другой способ предполагает размещение людей на дальних рядах (при этом нижние ряды останутся незанятыми). Тем не менее люди также могут заполнить полстадиона, заняв места случайным образом.
Теперь чтобы использовать пример со стадионом для объяснения понятия энтропии, мне нужно ввести еще две идеи. Во-первых, я буду называть каждую комбинацию из сидящих на стадионе людей состоянием системы (или, выражаясь технически, микросостоянием). Во-вторых, я буду исходить из того, что мы можем определить эквивалентные конфигурации, используя некоторый критерий, который для целей данной иллюстрации может быть просто средним заполненным рядом.
В данном примере принятое в статистической физике определение энтропии соответствует просто доле всех эквивалентных состояний (на самом деле это логарифм доли, однако эта формальность не имеет отношения к тому, что я пытаюсь сказать). Таким образом, энтропия является наименьшей, когда люди сидят максимально близко или максимально далеко от поля, поскольку существует только один способ такого размещения людей.[23] Энтропия является наибольшей, когда средним из занятых рядов является центральный, поскольку существует много способов размещения людей на местах, при которых средним занятым рядом будет центральный. В предложенном Больцманом определении энтропия представляет собой множество эквивалентных состояний. В случае со стадионом наибольшее число эквивалентных состояний существует тогда, когда средним из заполненных рядов является центральный.
Следует отметить, что энтропия, которая обычно ассоциируется с беспорядком, не является мерой беспорядка. Энтропия – это мера множества состояний (количества эквивалентных состояний). Тем не менее неупорядоченных состояний, как правило, бывает больше, поэтому на практике состояния высокой энтропии, скорее всего, будут неупорядоченными. Именно поэтому приравнивание беспорядка к энтропии не является таким уж неудачным упрощением. Однако увеличение энтропии может не сопровождаться увеличением беспорядка. Рассмотрим случай с расширением газа в коробке, которая удваивается в размере (или распространение людей по стадиону, увеличивающемуся в два раза). Энтропия газа увеличивается с размером коробки, поскольку в коробке большего размера существует больше вариантов организации частиц газа. Тем не менее газ в большей коробке не является более неупорядоченным, чем газ в меньшей коробке.
Шеннон был заинтересован в передаче микросостояния системы, например отдельного твита или расположения сидящих на нашем гипотетическом стадионе людей, поэтому он приравнял понятие информации к понятию энтропии, часто используя эти слова как синонимы. Передача сообщения об одном микросостоянии, в котором средним из занятых рядов является центральный, требует больше бит, так как при этом условии существует множество эквивалентных микросостояний, поэтому для передачи данных о некотором микросостоянии требуется создать очень конкретное сообщение. Таким образом, на языке Шеннона понятия информации и энтропии функционально эквивалентны, поскольку количество битов, необходимых для создания сообщения (информация по Шеннону), представляет собой функцию от числа возможных сообщений, которые могут быть переданы (множество состояний, которое мы понимаем как энтропию). Но, это не делает энтропию и информацию одним и тем же. Лауреат Нобелевской премии по химии 1967 года Манфред Эйген заметил: «Энтропия относится к среднему (физическому) состоянию, а информация – к конкретному (физическому) состоянию».