Как победить диабет. Руководство по питанию и образу жизни — страница 57 из 64

Diabetes Care. 2009; 32(5): 791–796.

81. Chiu THT, Huang HY, Chiu YF, et al. Taiwanese vegetarians and omnivores: Dietary composition, prevalence of diabetes and IFG. PLoS One. 2014; 9(2): 1–7.

82. Chiu THT, Pan W-H, Lin M-N, Lin C–L. Vegetarian diet, change in dietary patterns, and diabetes risk: a prospective study. Nutr Diabetes. 2018; 8(1): 12.

83. Vang A, Singh PN, Lee JW, Haddad EH, Brinegar CH. Meats, processed meats, obesity, weight gain and occurrence of diabetes among adults: Findings from adventist health studies. Ann NutrMetab. 2008; 52(2): 96–104.



Глава 3

1. Ornish D, Magbanua MJM, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci. 2008; 105(24): 8369–8374.

2. Willett WC. Balancing life-style and genomics research for disease prevention. Science. 2002; 296(5568): 695–698.

3. Taylor R, Leslie WS, Barnes AC, et al. Clinical and metabolic features of the randomised controlled Diabetes Remission Clinical Trial (DiRECT) cohort. Diabetologia. 2018; 61(3): 589–598.

4. Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018; 391(10120): 541–551.

5. Dunaief DM, Fuhrman J, Dunaief JL, Ying G. Glycemic and cardiovascular parameters improved in type 2 diabetes with the high nutrient density (HND) diet. Open J Prev Med. 2012; 2(3): 364–371.

6. Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? Am J Clin Nutr. 2009; 89(5): 1607S–1612S.

7. Tonstad S, Stewart K, Oda K, et al. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis. 2013; 23(4): 292–299.

8. Bradbury KE, Crowe FL, Appleby PN, et al. Serum concentrations of cholesterol, apolipoprotein A-I and apolipoprotein B in a total of 1694 meat-eaters, fish-eaters, vegetarians and vegans. Eur J Clin Nutr. 2014; 68(2): 178–183.

9. Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014; 29(2): 79–88.

10. InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC–InterAct Study and a meta-analysis of prospective studies. Diabetologia. 2015; 58(7): 1394–1408.

11. Krishnan S, Rosenberg L, Singer M, et al. Glycemic index, glycemic load, and cereal fiber intake and risk of type 2 diabetes in US black women. Arch Intern Med. 2007; 167(21): 2304.

12. Schulze MB, Schulz M, Heidemann C, et al. Fiber and magnesium intake and incidence of type 2 diabetes. Arch Intern Med. 2007; 167(9): 956.

13. Bozzetto L, Costabile G, Pepa G Della, et al. Dietary fibre as a unifying remedy for the whole spectrum of obesity-associated cardiovascular risk. Nutrients. 2018; 10: 943.

14. Silva FM, Kramer CK, de Almeida JC, et al. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: A systematic review with meta-analysis of randomized controlled trials. Nutr Rev. 2013; 71(12): 790–801.

15. McIntosh M, Miller C. A diet containing food rich in soluble and insoluble fiber improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutr Rev. 2001; 59(2): 52–55.

16. Aydin Ö, Nieuwdorp M, Gerdes V. The Gut Microbiome as a Target for the Treatment of Type 2 diabetes. Genetics. 2018; 18(8): 55.

17. Islam MA, Alam F, Solayman M, et al. Dietary phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases. Oxid Med Cell Longev. 2016; 2016: 5137431.

18. Aryaeian N, Sedehi SK, Arablou T. Polyphenols and their effects on diabetes management: A review. Med J Islam Repub Iran. 2017; 31: 134.

19. Silveira AC, Dias JP, Santos VM, et al. The action of polyphenols in Diabetes Mellitus and Alzheimer’s disease: a common agent for overlapping pathologies. Curr Neuropharmacol. 2018; 16.

20. Singh H, Venkatesan V. Treatment of ‘diabesity’: Beyond pharmacotherapy. Curr Drug Targets. 2018; 19(14): 1672–1682.

21. Carrera-Quintanar L, López Roa RI, Quintero-Fabián S, et al. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators Inflamm. 2018; 2018: 9734845.

22. Ahangarpour A, Sayahi M, Sayahi M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes Metab Syndr Clin Res Rev. 2019; 13(1): 854–857.

23. Silva B, Oliveira P, Casal S, et al. Promising potential of dietary (poly)phenolic compounds in the prevention and treatment of diabetes mellitus. Curr Med Chem. 2017; 24(4): 334–354.

24. Leiherer A, Mündlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul Pharmacol. 2013; 58(1–2): 3–20.

25. Zhang D-W, Fu M, Gao S-H, Liu J-L. Curcumin and diabetes: A systematic review. Evidence-Based Complement Altern Med. 2013; 2013: 16.

26. Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci. 2018; 21(5): 439–448.

27. Zhu J, Chen H, Song Z, et al. Effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2018; 2018: 5692962.

28. Fernando WMADB, Somaratne G, Goozee KG, et al. Diabetes and Alzheimer’s disease: Can tea phytochemicals play a role in prevention? J Alzheimer’s Dis. 2017; 59(2): 481–501.

29. Fu Q-Y, Li Q-S, Lin X-M, et al. Antidiabetic effects of tea. Molecules. 2017; 22(5): 849.

30. Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta – Mol Basis Dis. 2015; 1852(6): 1145–1154.

31. Öztürk E, Arslan AKK, Yerer MB, Bishayee A. Resveratrol and diabetes: A critical review of clinical studies. Biomed Pharmacother. 2017; 95: 230–234.

32. Behloul N, Wu G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol. 2013; 698(1–3): 31–38.

33. Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016; 2016: 9340637.

34. Link LB, Potter JD. Raw versus cooked vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev. 2004; 13(9): 1422–1435.

35. Roohbakhsh A, Karimi G, Iranshahi M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother. 2017; 91: 31–42.

36. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab Syndr Relat Disord. 2015; 13(10): 423–444.

37. Yoo JY, Kim SS. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients. 2016; 8(3): 173.

38. Barengolts E. Gut microbiota, prebiotics, probiotics, and synbiotics in management of obesity and prediabetes: Review of randomized controlled trials. Endocr Pract. 2016; 22(10): 1224–1234.

39. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, et al. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. Int J Mol Sci. 2016; 17(6).

40. Baker EJ, Miles EA, Burdge GC, et al. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res. 2016; 64: 30–56.

41. Molfino A, Amabile MI, Monti M, Muscaritoli M. Omega-3 Polyunsaturated fatty acids in critical illness: Anti-inflammatory, proresolving, or both? Oxid Med Cell Longev. 2017; 2017: 5987082.

42. Bhaswant M, Poudyal H, Brown L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutr Biochem. 2015; 26(6): 571–584.

43. Trautwein EA, Koppenol WP, De Jong A, et al. Plant sterols lower LDL-cholesterol and triglycerides in dyslipidemic individuals with or at risk of developing type 2 diabetes: A randomized, double-blind, placebo-controlled study. Nutr Diabetes. 2018; 8: 30.

44. Vilahur G, Ben-Aicha S, Diaz E, et al. Phytosterols and inflammation. Curr Med Chem. 2018; June 22 (e-pub ahead of print).

45. Derdemezis CS, Filippatos TD, Mikhailidis DP, Elisaf MS. Review article: effects of plant sterols and stanols beyond low-density lipoprotein cholesterol lowering. J Cardiovasc Pharmacol Ther. 2010; 15(2): 120–134.

46. Cooper AJM, Sharp SJ, Luben RN, et al. The association between a biomarker score for fruit and vegetable intake and incident type 2 diabetes: the EPIC-Norfolk study. Eur J Clin Nutr. 2015; 69(4): 449–454.

47. Liang J, Zhang Y, Xue A, et al. Association between fruit, vegetable, seafood, and dairy intake and a reduction in the prevalence of type 2 diabetes in Qingdao, China. Asia Pac J Clin Nutr. 2017; 26(2): 255–261.

48. Li M, Fan Y, Zhang X, et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open. 2014; 4(11): e005497.

49. Schwingshackl L, Hoffmann G, Lampousi A-M, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol