Как победить диабет. Руководство по питанию и образу жизни — страница 58 из 64

. 2017; 32(5): 363–375.

50. Clark JL, Taylor CG, Zahradka P. Rebelling against the (insulin) resistance: A review of the proposed insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds. Nutrients. 2018; 10(4).

51. Agrawal S, Ebrahim S. Association between legume intake and self-reported diabetes among adult men and women in India. BMC Public Health. 2013; 13(1): 1.

52. Villegas R, Gao Y-T, Yang G, et al. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am J Clin Nutr. 2008; 87(1): 162–167.

53. Tian S, Xu Q, Jiang R, Het al. Dietary protein consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Nutrients. 2017; 9(9).

54. Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol. 2013; 28(11): 845–858.

55. Ye EQ, Chacko SA, Chou EL, et al. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012; 142(7): 1304–1313.

56. Kyrø C, Tjønneland A, Overvad K, et al. Higher whole-grain intake is associated with lower risk of type 2 diabetes among middle-aged men and women: The Danish diet, cancer, and health cohort. J Nutr. 2018; 148(9): 1434–1444.

57. Asghari G, Ghorbani Z, Mirmiran P, Azizi F. Nut consumption is associated with lower incidence of type 2 diabetes: The Tehran Lipid and Glucose Study. Diabetes Metab. 2017; 43(1): 18–24.

58. Luo C, Zhang Y, Ding Y, et al. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A systematic review and meta-analysis. Am J Clin Nutr. 2014; 100(1): 256–269.

59. Vuksan V, Choleva L, Jovanovski E, et al. Comparison of flax (Linum usitatissimum) and Salbachia (Salvia hispanica L.) seeds on postprandial glycemia and satiety in healthy individuals: a randomized, controlled, crossover study. Eur J Clin Nutr. 2017; 71(2): 234–238.

60. Sylvia H. Ley, Osama Hamdy, V. Mohan FBH. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014; 383(9933): 1999–2007.

61. Dam RM Van, Seidell JC. Carbohydrate intake and obesity. Eur J Clin Nutr. 2007; 61. Suppl 1: S75–99.

62. Buyken AE, Flood V, Empson M, et al. Carbohydrate nutrition and inflammatory disease mortality in older adults. Am J Clin Nutr. 2010; 3: 634–643.

63. Myles IA. Fast Food Fever: Reviewing the impacts of the western diet on immunity. Nutrition Journal. 2014: 13; 61.

64. DiNicolantonio JJ, Mehta V, Onkaramurthy N, O’Keefe JH. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog Cardiovasc Dis. 2018; 61(1): 3–9.

65. Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy HHS Public Access. Crit Rev Clin Lab Sci. 2016; 53(1): 52–67.

66. Bhardwaj B, O’keefe EL, O’keefe JH. Death by Carbs: Added sugars and refined carbohydrates cause diabetes and cardiovascular disease in Asian Indians. Mo Med. 2016; 113(5): 395–400.

67. Asgari-Taee F, Zerafati-Shoae N, Dehghani M, Sadeghi M, Baradaran HR, Jazayeri S. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Eur J Nutr. 2018. (e-pub ahead of print)

68. Liu B, Sun Y, Snetselaar LG, et al. Association between plasma trans-fatty acid concentrations and diabetes in a nationally representative sample of US adults. J Diabetes. 2018; 10(8): 653–664.

69. Dorfman SE, Laurent D, Gounarides JS, et al. Metabolic implications of dietary trans-fatty acids. Obesity. 2009; 17(6): 1200–1207.

70. Tsutsui W, Fujioka Y. Is the association between dietary trans-fatty acids and insulin resistance remarkable in Japan? J Atheroscler Thromb. 2017; 24: 1199–1201.

71. Liu B, Sun Y, Snetselaar LG, et al. Association between plasma trans-fatty acid concentrations and diabetes in a nationally representative sample of US adults. J Diabetes. 2018; 10(8): 653–664.

72. Zhang Q, Yang Y, Hu M, et al. Relationship between plasma trans-fatty acid isomer concentrations and self-reported cardiovascular disease risk in US adults. Int J Food Sci Nutr. 2018; 69(8): 976–984.

73. U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. December 2015. URL: http://health.gov/dietaryguidelines/ 2015/guidelines/. Accessed October 29, 2018.

74. Eckel RH, Jakicic JM, Miller NH, et al. 2013 AHA / ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk A Report of the American College of Cardiology / American Heart Association Task Force on Practice Guidelines. Circulation. 2013: 1–46.

75. Koska J, Ozias MK, Deer J, et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism. 2016; 65(11): 1621–1628.

76. Fritsche KL. The science of fatty acids and inflammation. Adv Nutr. 2015; 6(3): 293S–301S.

77. Newsholme P, Keane D, Welters HJ, Morgan NG. Life and death decisions of the pancreatic b-cell: the role of fatty acids. Clin Sci. 2007; 112(1): 27–42.

78. Sacks FM, Lichtenstein AH, Wu JHY, et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation. 2017; 136(3): e1–e23.

79. U.S. Deparment of Agriculture. Agriculture Research Service. Nutrient Data Library. USDA National Nutrition Database for Standard Reference, Legacy Version Current: April 2018. URL: https://ndb.nal.usda.gov/ndb/search/list.

80. Fabricio G, Malta A, Chango A, De Freitas Mathias PC. Environmental contaminants and pancreatic beta-cells. J Clin Res Pediatr Endocrinol. 2016; 8(3): 257–263.

81. Magliano DJ, Loh VHY, Harding JL, et al. Persistent organic pollutants and diabetes: A review of the epidemiological evidence. Diabetes Metab. 2014; 40(1): 1–14.

82. EFSA. Cadmium dietary exposure. EFSA Journal. 2012; 10(1): 1–37.

83. Evangelou E, Ntritsos G, Chondrogiorgi M, et al. Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environ Int. 2016; 91: 60–68.

84. Liu G, Zong G, Wu K, et al. Meat cooking methods and risk of type 2 diabetes: Results from three prospective cohort studies. Diabetes Care. 2018; 41(5): 1049–1060.

85. Stallings-Smith S, Mease A, Johnson TM, Arikawa AY. Exploring the association between polycyclic aromatic hydrocarbons and diabetes among adults in the United States. Environ Res. 2018; 166: 588–594.

86. Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016; 25(1): 107–123.

87. Vlassara H, Uribarri J. Advanced Glycation End Products (AGE) and Diabetes: Cause, Effect, or Both? Curr Diab Rep. 2014; 14(1): 453.

88. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015; 5(1): 194–222.

89. Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine n-oxide: The good, the bad and the unknown. Toxins (Basel). 2016; 8(11).

90. Janeiro M, Ramírez M, Milagro F, et al. Implication of trimethylamine n-oxide (tmao) in disease: Potential biomarker or new therapeutic target. Nutrients. 2018; 10(10): 1398.

91. Samraj AN, Pearce OMT, Läubli H, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci. 2015; 112(2): 542–547.

92. Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016; 51: 16–30.

93. Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011; 105(01): 15–23.

94. Piya MK, Harte AL, McTernan PG. Metabolic endotoxaemia: Is it more than just a gut feeling? Curr Opin Lipidol. 2013; 24(1): 78–85.

95. Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 2013; 7(4): 880–884.

96. White D, Collinson A. Red meat, dietary heme iron, and risk of type 2 diabetes: The involvement of advanced lipoxidation endproducts. Adv Nutr. 2013; 4: 403–411.

97. Radzeviciene L, Ostrauskas R. Adding salt to meals as a risk factor of type 2 diabetes mellitus: A case-control study. Nutrients. 2017; 9(1): 67.

98. Horikawa C, Yoshimura Y, Kamada C, et al. Dietary sodium intake and incidence of diabetes complications in Japanese patients with type 2 diabetes: analysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab. 2014; 99(10): 3635–3643.

99. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013; 6: 327–338.

100. Suckling RJ, He FJ, Markandu ND, MacGregor GA. Modest salt reduction lowers blood pressure and albumin excretion in impaired glucose tolerance and type 2 diabetes mellitus. Hypertension. 2016; 67(6): 1189–1195.

101. Purohit V, Mishra S. The truth about artificial sweeteners – Are they good for diabetics?