Как победить диабет. Руководство по питанию и образу жизни — страница 60 из 64

Ann Nutr Metab. 2017; 71(1): 17–22.

35. Teixeira TFS, Collado MC, Ferreira CLLF, Bressan J, Peluzio M do CG. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012; 32(9): 637–647.

36. Genser L, Aguanno D, Soula HA, et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol. 2018; 246(2): 217–230.

37. Rapin JR, Wiernsperger N. Possible links between intestinal permeability and food processing: A potential therapeutic niche for glutamine. Clinics (Sao Paulo). 2010; 65(6): 635–643.

38. Catalioto R-M, Maggi CA, Giuliani S. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr Med Chem. 2011; 18(3): 398–426.

39. Fasano A. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011; 91(1): 151–175.

40. Fasano A. Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol. 2012; 42(1): 71–78.

41. Kort S De, Keszthelyi D, Masclee AAM. Leaky gut and diabetes mellitus: what is the link? Obes Rev. 2011; 12(6): 449–458.

42. Midura-Kiela MT, Radhakrishnan VM, Larmonier CB, et al. Curcumin inhibits interferon-g signaling in colonic epithelial cells. Am J Physiol Liver Physiol. 2012; 302(1): G85–G96.

43. Kirkley AG, Sargis RM. Environmental endocrine disruption of energy metabolism and cardiovascular risk. Curr Diab Rep. 2014; 14(6): 494.

44. Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, et al. Food additives, contaminants and other minor components: Effects on human gut microbiota – a review. J Physiol Biochem. 2018; 74(1): 69–83.

45. Liontiris MI, Mazokopakis EE. A concise review of Hashimoto thyroiditis (HT) and the importance of iodine, selenium, vitamin D and gluten on the autoimmunity and dietary management of HT patients. Points that need more investigation. Hell J Nucl Med. 20(1): 51–56.

46. Ferrari SM, Fallahi P, Antonelli A, Benvenga S. Environmental issues in thyroid diseases. Front Endocrinol (Lausanne). 2017; 8: 50.

47. Hirschberg AL, Naessén S, Stridsberg M, Byström B, Holtet J. Impaired cholecystokinin secretion and disturbed appetite regulation in women with polycystic ovary syndrome. Gynecol Endocrinol. 2004; 19(2): 79–87.

48. Jones A, McMillan MR, Jones RW, et al. Adiposity is associated with blunted cardiovascular, neuroendocrine and cognitive responses to acute mental stress. Lipinski M, ed. PLoS One. 2012; 7(6): e39143.

49. Joel Fuhrman. ANDI Food Scores: Rating the Nutrient Density of Foods | DrFuhrman.com. URL: https://www.drfuhrman.com/library/eat-to-live-blog/128/andi-food-scores-rating-the-nutrientdensity-of-foods. Accessed January 22, 2019.

50. Clifton P. Assessing the evidence for weight loss strategies in people with and without type 2 diabetes. World J Diabetes. 2017; 8(10): 440–454.



Глава 5

1. Food and Agriculture Organization of the United Nations. Carbohydrates in Human Nutrition: Report of aJointFAO/WHOExpertConsultation,Rome,14–18April1997. World Health Organization; 1998.

2. Craig WJ. Phytochemicals: Guardians of our Health. J Am Diet Assoc. 1997; 97(10): S199–S204.

3. Sievenpiper JL, Chan CB, Dworatzek PD, Freeze C, L WS. Diabetes Canada Clinical Practice Guidelines Expert Committee—2018 Clinical Practice Guidelines, Nutrition Therapy. Can J Diabetes. 2018; 42: S64–S79.

4. Johnson RK, Appel LJ, Brands M, et al. Dietary sugars intake and cardiovascular health: A scientific statement from the American Heart Association. Circulation. 2009; 120(11): 1011–1020.

5. Welsh JA, Sharma AJ, Grellinger L, Vos MB. Consumption of added sugars is decreasing in the United States. Am J Clin Nutr. 2011; 94(3): 726–734.

6. Powell ES, Smith-Taillie LP, Popkin BM. Added sugars intake across the distribution of US children and adult consumers: 1977–2012. J Acad Nutr Diet. 2016; 116(10): 1543–1550.e1.

7. Kim Y, Je Y. Prospective association of sugar-sweetened and artificially sweetened beverage intake with risk of hypertension. Arch Cardiovasc Dis. 2016; 109(4): 242–253.

8. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber,Fat,FattyAcids,Cholesterol,Protein,andAminoAcids(Macronutrients). Washington, D.C.: National Academies Press; 2005.

9. Mann J. Dietary carbohydrate: relationship to cardiovascular disease and disorders of carbohydrate metabolism. Eur J Clin Nutr. 2007; 61(S1): S100–S111.

10. DiNicolantonio JJ, Lucan SC, O’Keefe JH. The evidence for saturated fat and for sugar related to coronary heart disease. Prog Cardiovasc Dis. 2016; 58(5): 464–472.

11. Vreman RA, Goodell AJ, Rodriguez LA, Porco TC, Lustig RH, Kahn JG. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: A microsimulation model. BMJ Open. 2017; 7(8): e013543.

12. Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy HHS Public Access. Crit Rev Clin Lab Sci. 2016; 53(1): 52–67.

13. World Cancer Research Fund, American Institute for Cancer Research. Food, Nutrition, Physical Activity and the PreventionofCancer: AGlobalPerspective. Washington, D.C., 2007.

14. Key TJ, Spencer EA. Carbohydrates and cancer: an overview of the epidemiological evidence. Eur J Clin Nutr. 2007; 61(S1): S112–S121.

15. Kabat GC, Kim MY, Strickler HD, et al. A longitudinal study of serum insulin and glucose levels in relation to colorectal cancer risk among postmenopausal women. Br J Cancer. 2012; 106(1): 227–232.

16. Romanos-Nanclares A, Toledo E, Gardeazabal I, Jiménez-Moleón JJ, Martínez-González MA, Gea A. Sugar-sweetened beverage consumption and incidence of breast cancer: The Seguimiento Universidad de Navarra (SUN) Project. Eur J Nutr. October 2018.

17. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber,Fat,FattyAcids,Cholesterol,Protein,andAminoAcids. Washington, D.C.: National Academies Press. 2002.

18. van Dam RM, Seidell JC. Carbohydrate intake and obesity. Eur J Clin Nutr. 2007; 61(S1): S75–S99.

19. Ruanpeng D, Thongprayoon C, Cheungpasitporn W, Harindhanavudhi T. Sugar and artificially sweetened beverages linked to obesity: A systematic review and meta-analysis. QJM An Int J Med. 2017; 110(8): 513–520.

20. Paschos P, Paletas K. Non-alcoholic fatty liver disease and metabolic syndrome. Hippokratia. 2009; 13(1): 9–19.

21. Vreman RA, Goodell AJ, Rodriguez LA, et al. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: A microsimulation model. BMJ Open. 2017; 7(8): e013543.

22. Nier A, Brandt A, Conzelmann I, et al. Non-alcoholic fatty liver disease in overweight children: Role of fructose intake and dietary pattern. Nutrients. 2018; 10(9): 1329.

23. Nseir W, Nassar F, Assy N. Soft drinks consumption and nonalcoholic fatty liver disease. World J Gastroenterol. 2010; 16(21): 2579–2588.

24. Ter Horst KW, Serlie MJ. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017; 9(9).

25. Jamnik J, Rehman S, Blanco Mejia S, et al. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies. BMJ Open. 2016; 6(10): e013191.

26. Ebrahimpour-koujan S, Saneei P, Larijani B, Esmaillzadeh A. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. October 2018: 1–10.

27. O’Connor L, Imamura F, Brage S, Griffin SJ, Wareham NJ, Forouhi NG. Intakes and sources of dietary sugars and their association with metabolic and inflammatory markers. Clin Nutr. 2018; 37(4): 1313–1322.

28. Stegenga ME, Crabben SN van der, Dessing MC, et al. Effect of acute hyperglycaemia and / or hyperinsulinaemia on proinflammatory gene expression, cytokine production and neutrophil function in humans. Diabet Med. 2008; 25(2): 157–164.

29. Della Corte K, Perrar I, Penczynski K, et al. Effect of dietary sugar intake on biomarkers of subclinical inflammation: A systematic review and meta-analysis of intervention studies. Nutrients. 2018; 10(5): 606.

30. Takeuchi M, Iwaki M, Takino J, et al. Immunological detection of fructose-derived advanced glycation end-products. Lab Invest. 2010; 90(7): 1117–1127.

31. Gugliucci A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr An Int Rev J. 2017; 8(1): 54–62.

32. Jang C, Hui S, Lu W, et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018; 27(2): 351–361.e3.

33. Schwarz J-M, Noworolski SM, Erkin-Cakmak A, et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017; 153(3): 743–752.

34. Schwarz J-M, Noworolski SM, Wen MJ, et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab. 2015; 100(6): 2434–2442.

35. Wells HF, Buzby JC. Economic Information Bulletin Number 33 Dietary Assessment of Major Trends in U.S., 2008. URL: www.ers.usda.gov. Accessed January 22, 2019.

36. Tappy L, Lê K-A. metabolic effects of fructose and the worldwide increase in obesity.