Как победить диабет. Руководство по питанию и образу жизни — страница 63 из 64

EXCLI Journal. 2014; 13: 451–453.

38. Heather Hausenblas. Resveratrol in diabetes care. Natural Medicine Journal. 2014; 6(2).

39. Axelsson AS, Tubbs E, Mecham B, et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med. 2017; 9(394): eaah4477.

40. Son MJ, Miura Y, Yagasaki K. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology. 2015; 67(4): 641–652.

41. Bansode T, Salalkar B, Dighe P, et al. Comparative evaluation of antidiabetic potential of partially purified bioactive fractions from four medicinal plants in alloxan-induced diabetic rats. AYU (An Int Q J Res Ayurveda). 2017; 38(2): 165.

42. Gebel E. Resveratrol: A Miracle Molecule? Diabetes Forecast. 2009; 62(5): 50–51.

43. Gonzalez-Abuin N, Pinent M, Casanova-Marti A, et al. Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem. 2015; 22(1): 39–50.

44. Turrini E, Ferruzzi L, Fimognari C. Possible effects of dietary anthocyanins on diabetes and insulin resistance. Curr Drug Targets. 2017; 18(6): 629–640.

45. Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2018; 11(1).

46. Sluijs I, Cadier E, Beulens JWJ, et al. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr Metab Cardiovasc Dis. 2015; 25(4): 376–381.

47. Roohbakhsh A, Karimi G, Iranshahi M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother. 2017; 91: 31–42.

48. Guo H, Ling W. The update of anthocyanins on obesity and type 2 diabetes: Experimental evidence and clinical perspectives. Rev Endocr Metab Disord. 2015; 16(1): 1–13.

49. Fabricio G, Malta A, Chango A, De Freitas Mathias PC. Environmental contaminants and pancreatic beta-cells. J Clin Res Pediatr Endocrinol. 2016; 8(3): 257–263.

50. Yokoi K, Konomi A. Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul Toxicol Pharmacol. 2012; 63(2): 291–297.

51. Mania M, Rebeniak M, Szynal T, et al. Total and inorganic arsenic in fish, seafood and seaweeds – exposure assessment. Rocz Panstw Zakl Hig. 2015; 66(3): 203–210.

52. Nachman KE, Ginsberg GL, Miller MD, Murray CJ, Nigra AE, Pendergrast CB. Mitigating dietary arsenic exposure: Current status in the United States and recommendations for an improved path forward. Sci Total Environ. 2017; 581–582: 221–236.

53. Cubadda F, Jackson BP, Cottingham KL, et al. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci Total Environ. 2017; 579: 1228–1239.

54. Smith-Spangler C, Brandeau ML, Hunter GE, et al. are organic foods safer or healthier than conventional alternatives? Ann Intern Med. 2012; 157(5): 348.

55. Mie A, Andersen HR, Gunnarsson S, et al. Human health implications of organic food and organic agriculture: A comprehensive review. Environ Heal. 2017; 16(1): 111.

56. Hurtado-Barroso S, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM. Organic food and the impact on human health. Crit Rev Food Sci Nutr. 2019: 59(4): 704–714.

57. Yang T, Doherty J, Zhao B, et al. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. J Agric Food Chem. 2017; 65(44): 9744–9752.

58. Birlouez-Aragon I, Saavedra G, Tessier FJ, et al. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr. 2010; 91(5): 1220–1226.

59. Liu G, Zong G, Wu K, et al. Meat cooking methods and risk of type 2 diabetes: Results from three prospective cohort studies. Diabetes Care. 2018; 41(5): 1049–1060.

60. Sugimura T, Wakabayashi K, Nakagama H, Nagao M. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 2004; 95(4): 290–299.

61. Khan MR, Busquets R, Saurina J, et al. Identification of seafood as an important dietary source of heterocyclic amines by chemometry and chromatography-mass spectrometry. Chem Res Toxicol. 2013; 26(6): 1014–1022.

62. Lee Y-N, Lee S, Kim J-S, et al. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products. Food Chem. 2019; 277: 156–161.

63. Zhang Q, Qin W, Lin D, et al. The changes in the volatile aldehydes formed during the deepfat frying process. J Food Sci Technol. 2015; 52(12): 7683–7696.

64. Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004; 104(8): 1287–1291.

65. Chen G, Scott Smith J. Determination of advanced glycation endproducts in cooked meat products. Food Chem. 2015; 168: 190–195.

66. Semla M, Goc Z, Martiniaková M, et al. Acrylamide: a common food toxin related to physiological functions and health. Physiol Res. 2017; 66(2): 205–217.

67. Hamidi EN, Hajeb P, Selamat J, Abdull Razis AF. Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: a Tool for Assessing Human Cancer Risk. Asian Pac J Cancer Prev. 2016; 17(1): 15–23.

68. Dobarganes C, Márquez-Ruiz G. Possible adverse effects of frying with vegetable oils. Br J Nutr. 2015; 113(S2): S49–S57.

69. Sansano M, Juan-Borrás M, Escriche I, et al. Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. J Food Sci. 2015; 80(5): T1120–T1128.

70. Yaacoub R, Saliba R, Nsouli B, Khalaf G, Birlouez-Aragon I. Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds. J Agric Food Chem. 2008; 56(16): 7082–7090.

71. Provenzano LF, Stark S, Steenkiste A, Piraino B, Sevick MA. Dietary sodium intake in type 2 diabetes. Clin Diabetes. 2014; 32(3): 106–112.

72. Harnack LJ, Cogswell ME, Shikany JM, et al. Sources of sodium in us adults from 3 geographic regions. Circulation. 2017; 135(19): 1775–1783.

73. U.S. Department of Agriculture. Agriculture Research Service. Nutrient Data Library. USDA National Nutrition Database for Standard Reference, Legacy Version Current: April 2018. URL: https://ndb.nal.usda.gov/ndb/search/list.

74. Lee Y-J, Wang M-Y, Lin M-C, Lin P-T. Associations between vitamin B12 status and oxidative stress and inflammation in diabetic vegetarians and omnivores. Nutrients. 2016; 8(3): 118.

75. Bell DSH. Metformin-induced vitamin B12 deficiency presenting as a peripheral neuropathy. South Med J. 2010; 103(3): 265–267.

76. Liu Q, Li S, Quan H, Li J. Vitamin B12 status in metformin treated patients: systematic review. Pietropaolo M, ed. PLoS One. 2014; 9(6): e100379.

77. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate OBV and C. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin,VitaminB6,Folate,VitaminB12,PantothenicAcid,Biotin,andCholine. National Academies Press (US); 1998.

78. Forrest KYZ, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res. 2011; 31(1): 48–54.

79. Nakashima A, Yokoyama K, Yokoo T, Urashima M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes. 2016; 7(5): 89.

80. Wei Z, Yoshihara E, He N, et al. Vitamin D Switches BAF Complexes to Protect b Cells. Cell. 2018; 173(5): 1135–1149.e15.

81. Kalaany NY, Sabatini DM. Tumours with PI3K activation are resistant to dietary restriction. Nature. 2009; 458(7239): 725–731.

82. Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Derm Endocrinol. 2013; 5(1): 51–108.

83. National Institutes of Health Office of Dietary Supplements. Vitamin D – Health Professional Fact Sheet.; 2018. URL: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/.

84. Odegaard AO, Jacobs DR, Sanchez OA, et al. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc Diabetol. 2016; 15(1): 1–12.

85. Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011; 50(5): 567–575.

86. Wilson R, Willis J, Gearry R, et al. Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: associations with glycaemic control, obesity, and smoking. Nutrients. 2017; 9(9): 997.

87. Jaffe R. Phytonutrients in Diabetes Management. In Bioactive Food as Dietary Interventions for Diabetes. Watson, RR and Preddy VR. Elsevier Inc. 2013: 339–353.

88. Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004; 27(11): 2741–2751.

89. Roussel AM, Andriollo-Sanchez M, Ferry M, et al. Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr. 2007; 98(2): 326–331.

90. National Institutes of Health Office of Dietary Supplements. Dietary Supplement Fact Sheet: Chromium – Health Professional Fact Sheet. 2018. URL: https://ods.od.nih.gov/factsheets/Chromium- HealthProfessional/. Accessed January 23, 2019.

91. Mooren FC. Magnesium and disturbances in carbohydrate metabolism. Diabetes, Obes Metab. 2015; 17(9): 813–823.

92. Barbagallo M, Dominguez LJ. Magnesium and type 2 diabetes. World J Diabetes. 2015; 6(10): 1152–1157.

93. Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium,VitaminD,andFluoride