Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей — страница 26 из 29

Я так подробно описываю все это, чтобы опыт точно получился.

А вот я сфотографировал, как это уже получилось после обработки напильником. Повторяю, высокая точность здесь не нужна, главное, чтобы более-менее гладко было обработано. Видите, я просто закруглил края. Один более круто, другой более полого.

На фото виден профиль крыла бумеранга. На самом деле поверхность должна просто быть более-менее выпуклой, а нижняя сторона – плоской.


Если теперь сложить эти обработанные линейки, то мы получим крест, каждое крыло которого совершенно одинаково по форме.

Так будет выглядеть бумеранг после склейки. Только уголки закруглим.


Теперь надо обязательно закруглить уголки у крыльев. Это не имеет отношения к аэродинамике. Просто иногда бумеранг попадает в полете не туда, куда надо, и лучше, если вращающийся винт стукнет гладким, а не острым. Страшного ничего нет, бумеранг слишком легкий, чтобы действительно что-то повредить. А вот боевые бумеранги, которые в размере больше метра и делаются из твердого дерева, легко позволяли охотникам убивать таких крупных зверей, как кенгуру!

На фотографии видно, что я скруглил уголки на концах крыльев бумеранга. На всякий случай, для безопасности.


Теперь еще верхнюю поверхность надо обработать шкуркой (наждачной бумагой). Сверхгладкой поверхности не надо, надо убрать зазубрины от напильника. Все равно потом еще покрасим бумеранг, это сгладит неровности.

Проще всего сшить крылья нитками, предварительно склеив.


Что мы делаем дальше? А мы в центральном квадрате просверливаем четыре дырочки в обоих линейках. Склеиваем так, чтобы дырочки совпали (я пользуюсь обычным «быстроклеящим» клеем). А после склеивания обе линейки сшиваю обычной ниткой, будто пришиваю пуговицу. Наматываю побольше ниток и заливаю клеем. Все. Бумеранг почти готов! В принципе его уже можно кидать! На фотографии видно, как я сшил две линейки. И видно необработанную сторону бумеранга. Видите, я ее даже не трогал – не обрабатывал никак. После покраски, конечно, цифры пропадут, и все станет красиво.

Бумеранг просто сшивается, предварительно надо склеить крылья, а потом промазать клеем нитки для надежности.


Тем, кто хочет больше заниматься бросанием бумеранга и меньше его поисками, рекомендую покрасить бумеранг краской. Сгодится любая водостойкая краска, например из аэрозольных баллончиков. Но я, например, красил гуашью и сверху покрывал тонким слоем лака.

Помимо красоты и улучшенной аэродинамики, это еще и придает дополнительную крепость бумерангу. Особенно если покрыть лаком.


Как же его бросать? Я сделал несколько фотографий.

На фотографии видно, что бумеранг держат вертикально и бросают ровно вперед. При этом придают ему вращательное движение, как будто колесо катится над землей. Моделью служит моя любимая жена Людмила.


На этой фотографии видна одна из ошибок при броске бумеранга. Его слишком наклонили влево. При таком броске он врежется в землю.


Если же его при броске отклонить вправо, то он взлетит в небо и упадет резко «колом» на землю. Это тоже ошибка.


Бумеранг должен в момент броска быть в строго вертикальном положении!


Ну что ж, выходите на открытое место, проследите, чтобы вокруг не было людей и животных, – и покидайте бумеранг. Поверьте мне, а уж я их переделал десятки – это такое удовольствие!

87Еще о точке росы, или Паровая баня

Мы уже сталкивались с понятием «точка росы», когда пар переходит из газообразного в жидкое состояние. У этого физического явления есть много полезных вариантов применения. Например, в детективных рассказах или в книгах про шпионов часто описывается ситуация, когда надо вскрыть конверт незаметно. Что делают в таком случае?

Берут чайник, нагревают его. Дожидаются, когда из носика начинает бить струя пара. Потом держат письмо над паром так, чтобы он попадал на заклеенную полоску.

Мы уже знаем, что произойдет. Письмо относительно холодное, и пар, попадая на него, начинает превращаться в жидкость. Мельчайшие капельки пропитывают бумагу и разжижают клей. Письмо через некоторое время можно открыть, не порвав бумагу, прочитать – и потом заклеить по новой, незаметно.

Тысячи шпионов проделывали этот опыт… но знали ли они про физику и «точку росы», используя паровую баню для открывания секретных писем? Сомневаюсь… Так иногда люди физику не знают, а законы используют. А если применить этот принцип к более благородным вещам, чем открывание чужих писем, то можно придумать и другие полезные варианты. Например, если что-то клеили из бумаги и неправильно склеили, а портить (мочить водой) бумагу нельзя.

А вот еще вариант: если нужно протереть очки или стеклянную поверхность, мы обычно дышим на это стекло – пар изо рта превращается в тонкий слой воды, оседая на более холодной поверхности. И можно протереть стекло. Правда, лучше для этого пользоваться специальными жидкостями или просто промыть стекло с мылом и вытереть газетами, потому что иначе стекла можно испортить. А почему – в следующей маленькой главе…

88Как протирать очки

Итак, когда мы дышим на очки, появляется тонкий слой воды. Берем тряпочку и протираем… И на стекле образуются мелкие царапины! Если так делать часто, то постепенно стекло портится и теряет прозрачность. Разберемся. Во-первых, почему от царапин стекло теряет прозрачность? Вопрос вроде бы простой, а на самом деле я проверял – немногие могут ответить точно. Давайте посмотрим на картинку.

Царапина, как видно на увеличенной картинке, представляет собой острое углубление в стекле. То есть образуется как бы канавка. (Кстати, стекло я обозначил на рисунке штришками – так настоящие инженеры обозначают стекло на чертежах.) Образуется царапина потому, что в воздухе плавает пыль, оседает на тряпочках и стеклах. А часто эти пылинки по своей твердости гораздо тверже стекла. И хотя они почти не заметны обычному глазу, работают как настоящий резец.

Так вот, на картинке изображены лучи света, падающие на поверхность стекла. Для простоты положим, что они падают перпендикулярно к поверхности. В таком случае они свободно проходят через стекло (немного, правда, отражаются, но это не влияет на тот путь, по которому идут лучи света) и попадают дальше нам в зрачок.

Но та часть света, тот луч, который упал на царапину, попадает на наклонную поверхность, то есть падает под углом к стеклу. Мы уже разбирали, что при изменении угла падения траектория луча изменяется, он отклоняется в сторону!

Значит, часть света будет проходить через целые участки стекла и создавать цельную картинку, а некоторая часть, попадающая на царапины, будет отклоняться, рассеиваться, портить изображение!

Поэтому настоящую рабочую оптику (стекла телескопов, биноклей, зрительных приборов) протирают очень аккуратно, специальными составами, часто спиртом. При этом используют мягчайшие кисточки. Главное, при протирке не нажимать сильно, чтобы, даже если пылинка и попала на поверхность, ее смыло потоком жидкости. Потому что иначе она «проскребет» поверхность и загубит технику!

Итак, каждая царапина работает как призма, отклоняющая лучи!

89Полное внутреннее отражение, или Что такое оптический кабель

Для опыта нам потребуется: кусок стекла, лазерная указка или маленький фонарик.

В современных компьютерных системах устройства между собой «общаются» по оптическим кабелям. Световые сигналы летят по гибкому шнуру, неся информацию из одной точки в другую. При этом, как ни изгибай кабель, свет не «выскакивает» из шнура, а следует по любой извилистой траектории.

Как этого добиваются?

Мы знаем, что лучи поворачивают в сторону, если падают под углом на поверхность стекла (или другого прозрачного вещества). Причем этот угол зависит от разницы скорости движения света между тем веществом, откуда прилетел луч, и тем, в которое он входит.

Давайте рассмотрим картинку.

Луч, обозначенный цифрой 1, идет внутри стекла ровно перпендикулярно к поверхности. Он проходит, не изменяя направления. Луч 2 – немножко под углом. Он отклоняется немного в сторону. Луч 3 отклоняется еще сильнее… Так, если угол изменяется, то постепенно выходящий луч все ближе подходит к самой поверхности стекла. Наступает такой момент, что луч достигает критического угла и его продолжение, выходящее из стекла, уже практически «скользит» по поверхности. На нашем рисунке это черный луч 5.

Все! Все остальные лучи, идущие под еще большими углами, будут отражаться от внутренней поверхности стекла и уходить «внутрь»!

Посмотрим, что будет, если луч света войдет в тонкую стеклянную трубку или лист стекла «с торца».

Луч немножко изменит свой угол и пройдет через стекло некоторое расстояние, после чего наткнется на внутреннюю поверхность стекла. Он отразится внутрь и побежит, пока снова не наткнется на поверхность и тоже в соответствии с законами физики отразится внутрь, только уже в другую сторону! И так будет продолжаться, пока световой луч не затухнет. Понятно, что свет немножко «гасится», ослабляет свое свечение с расстоянием. Поэтому рано или поздно, конечно, свет затухнет. Но до тех пор так и будет бежать вперед и вперед.

Те, кто разрабатывал системы связи для передачи информации, воспользовались этим физическим законом и сделали очень простую (на первый взгляд) вещь: создали кабель, состоящий из огромного количества тонких и гибких стеклянных трубочек. Самое главное (и самое сложное в производстве таких кабелей), что каждая трубочка на обоих концах кабеля находится точно в том же месте и в начале, и в конце. Поэтому изображение не искажается. Чтобы пояснить, посмотрим на следующую картинку. Предположим, что мы положили в ряд пять трубочек, причем они не «перепутываются», а идут, изгибаясь, рядом до самого конца. Длина у них одинаковая. Будем светить разным светом (красным, зеленым, желтым и т. д.) в каждую из трубочек с одной стороны, в начале.