Как работает музыка — страница 74 из 82

атическим пропорциям.

Если гамма состоит из квинт и кварт, которые математически резонируют (это называется «натуральный строй»), все будет звучать хорошо лишь до тех пор, пока вы не решите модулировать в другую тональность. Если, например, тональность (или новая гамма), к которой вы хотите перейти в своей мелодии, начинается с субдоминанты в вашей оригинальной тональности, что часто встречается в современных поп-мелодиях, вы обнаружите, что ноты в новой тональности больше не выстраиваются в приятном благозвучии, в небесном и математическом строю. Некоторые из них будут звучать хорошо, но другие – так себе, кисло.

Андреас Веркмейстер предложил решение этой проблемы в середине XVII века. Церковные органы нельзя перенастроить, поэтому на них сложно играть в разных тональностях. Он предложил темперировать – слегка подстроить квинты и тем самым все остальные ноты в гамме, чтобы можно было переходить в другие тональности, сохраняя приятное звучание. Это был компромисс – на смену идеальным математическим гармониям, основанным на физических вибрациях, пришла другая математика, математика контрапункта, и стали возможными смены тональностей. Веркмейстер, Иоганн Кеплер, Барбаро и другие в то время верили в идею божественной гармонической пропорции, описанной в книге Кеплера «Гармония мира», даже несмотря на то (хотя, может, я и ошибаюсь), что Кеплер в некотором роде отрицал или корректировал работу Бога.

Бах был последователем инноваций Веркмейстера и в своем творчестве постоянно употреблял модуляции по всей клавиатуре в разнообразные тональности. Его музыка – настоящая техническая демонстрация того, на что была способна новая система строя. Мы уже привыкли к этому темперированному строю, несмотря на его «космические» недостатки. Теперь, если мы услышим музыку, сыгранную в натуральном строе, нам покажется, что она сыграна на расстроенном инструменте, хотя причиной будет то, что музыканты непременно хотят менять тональности.

Пурвес с коллегами из Университета Дьюка обнаружили, что звуковой диапазон, который имеет значение и вызывает у нас максимальный эмоциональный отклик, идентичен диапазону звуков, которые производим мы сами. Наши уши и наш мозг эволюционировали, чтобы улавливать тонкие нюансы в этом диапазоне, и за его пределами мы слышим намного меньше, а часто вообще ничего. Мы не можем слышать то, что слышат летучие мыши, или тот субгармонический звук, который издают киты. Музыка за редким исключением также попадает в слышимый диапазон. Хотя некоторые обертоны, ответственные за характерное звучание голосов и инструментов, находятся за пределами диапазона нашего слуха, мы все равно воспринимаем производимый ими эффект. Та часть нашего мозга, которая анализирует звуки в тех же частотах, в которых мы сами их издаем, отличается размерами и сложностью – так же, как, к примеру, другая высокоразвитая часть нашего мозга, которая ответственна за визуальный анализ лиц.

Группа Пурвеса высказала предположение, что периодические звуки – звуки, которые повторяются регулярно, – обычно указывают на наличие живых существ и поэтому более интересны для нас. Звук, который повторяется снова и снова, может предупреждать нас об опасности, или он может привести к другу, источнику пищи или воды. Мы можем видеть, как эти параметры и области интереса сужаются к зоне звуков, которые мы называем музыкой. Так что вполне естественно, как предположил Пурвес, что человеческая речь влияет на эволюцию слуховой системы человека, а также на ту часть мозга, которая обрабатывает эти звуковые сигналы. Наша способность говорить, а также способность воспринимать нюансы речи развивались совместно. Далее он предполагает, что параллельно эволюционировали и наши музыкальные предпочтения. Изложив таким образом то, что могло бы показаться очевидным, группа приступила к изучению вопроса, действительно ли существует какое-либо биологическое обоснование музыкальных гамм.

Исследователи записали около 600 носителей английского и других языков (в частности, китайского, то есть мандаринского), каждый из которых проговаривал предложение длиной от десяти до двадцати секунд, а затем разбили их на 100 000 звуковых сегментов. Затем они с помощью компьютера исключили из этих записей все элементы речи, являющиеся уникальными для различных культур. Они в некотором роде отсеивали из речи язык и культуру, оставляя только звуки, которые являются общими для всех людей. Выяснилось, что при этом нерелевантными с фонетической точки зрения оказываются по большей части согласные, те звуки, которые мы издаем губами, языком и зубами. Таким образом, остались лишь гласные звуки, за которые ответственны наши голосовые связки – тональные вокальные звуки, распространенные среди человечества (к формированию согласных голосовые связки не имеют отношения).

Ученые исключили все звуки [c], взрывные звуки [п] и щелчки [к]. Затем они предложили оставить только универсальные тоны и ноты, отбросив дополнительную информацию так, чтобы слова каждого стали своего рода протопением – вокальными мелодиями, присущими человеческой речи. Эти ноты, которые мы поем, когда говорим, затем были нанесены на график, представляющий частоту использования каждой ноты, и, конечно же, пики – самые громкие и самые заметные ноты – почти все легли на двенадцать нот хроматической шкалы.

В речи (и при обычном пении) эти ноты или тона дополнительно модифицируются нашими языками и нёбом, в результате чего возникает множество обертонов. Сдавленный звук, открытый звук. Складки в голосовых связках также производят характерные обертоны; все эти обертоны помогают идентифицировать звуки, которые мы издаем, как человеческую речь и окрашивают голос каждого человека. Когда ученые из Университета Дьюка исследовали, что это за обертоны, они обнаружили, что эти дополнительные тоны соответствовали тому, что мы считаем приятными «музыкальными» гармониями. «70 %… точно попадали на музыкальные интервалы», – продолжал Пурвес. Были представлены все основные гармонические интервалы: октавы, квинты, кварты, большие терции и большие сексты. «Существует биологическая основа для музыки, и эта биологическая основа и есть сходство между музыкой и речью, – подытожил Пурвес. – Вот почему мы любим музыку. Музыка гораздо сложнее, чем [пропорции] Пифагора. Причина не в математике, а в биологии»[132].

Я бы немного смягчил это заявление, сказав, что обертоны, создаваемые нашим нёбом и голосовыми связками, могут стать заметными, потому что, подобно вибрирующей струне Архимеда, любой производящий звук предмет работает с иерархией тонов. Эта математика применима к нашим телам и голосовым связкам, а также к струнам, хотя Пурвес все же близок к истине, когда говорит, что мы настроили наши ментальные радиостанции на тона и обертоны, которые сами производим как в речи, так и в музыке.

Музыка и эмоции

Пурвес на этом не остановился и сделал еще один шаг в интерпретации данных, собранных его командой. В исследовании 2009 года ученые попытались проследить, попадают ли по высоте тона гласные счастливой (возбужденной, как они ее называют) речи на мажорные гаммы и попадают ли гласные грустной (подавленной) речи на ноты минорных гамм соответственно. Смелая попытка! Мне кажется, что подобные мажорные/минорные эмоциональные коннотации должны быть культурно обусловлены, учитывая разнообразие музыки во всем мире. Я помню, как во время одного тура, когда играл музыку с большим количеством латинских ритмов, некоторые (в основном англосаксонские) зрители и критики думали, что это была радостная музыка из-за ее живых ритмов. (Возможно, тут есть и намек на то, что латиноамериканская музыка воспринимается как более поверхностная, но мы не будем затрагивать подобные предубеждения.) Многие из песен, которые я исполнял, были в минорных тональностях и обладали, по моему мнению, слегка меланхоличной атмосферой, хотя это и компенсировалось живыми синкопированными ритмами. Могло ли привносимое ритмами «счастье» перекрыть меланхоличность мелодий для этих конкретных слушателей? Видимо да, поскольку многие тексты песен сальсы и фламенко, к примеру, трагичны.

Это не первый раз, когда мажорная/счастливая, минорная/грустная аналогия была предложена. По словам научного писателя Филипа Болла, в ответ на гипотезу о том, что в славянской и в большей части испанской музыки используются минорные тональности для счастливой музыки, музыкант и музыковед Дерик Кук заявил, что жизнь этих народов была настолько тяжелой, что они даже не представляли себе, что такое счастье.

В 1999 году музыкальные психологи Балквилл и Томпсон провели эксперимент в Йоркском университете, пытаясь определить, насколько культурно специфичны эти эмоциональные сигналы. Они попросили западных слушателей оценить мелодии на языке навахо и хиндустани и определить, счастливые они или грустные. Результаты оказались довольно точными. Однако, как указывает Болл, были и другие подсказки, такие как темп и тембр. Он также говорит, что до Ренессанса в Европе не было никакой связи между грустью и минорными тональностями, подразумевая тем самым, что культурные факторы могут сильно повлиять на слабые, хоть и реальные, биологические корреляции.

Вполне вероятно, что мы эволюционировали так, что получили возможность кодировать эмоциональную информацию в нашей речи невербальными способами. Мы можем мгновенно определить по тону чьего-то голоса эмоциональное состояние: злится говорящий, радуется, печалится или притворяется. Бóльшая часть информации, которую мы получаем, исходит из подчеркнутых тонов (которые намекают на минорные или мажорные гаммы), произносимых «мелодий», а также из обертонов и тембра голоса. Все эти аспекты речи несут такие же эмоциональные подсказки, как и сами слова. То, что эти вокальные звуки могут соответствовать музыкальным гаммам и интервалам и что мы могли разработать мелодии, которые берут начало в этих вариациях речи, не кажется таким уж большим скачком.

Со-чувствие