Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями — страница 31 из 100

[263].

Как вы прочитали в предыдущей главе, для конструирования эмоций используется богатый набор понятий. Сейчас вы узнаете, каким образом ваш мозг приобретает и использует систему понятий с самых ранних моментов, когда вы были младенцем. Попутно вы также изучите нейронную основу для нескольких важных тем, упомянутых ранее: эмоциональной гранулярности, популяционного мышления, почему эмоции ощущаются инициированными, а не сконструированными, и почему зоны регуляции телесных ресурсов могут влиять на любое ваше решение и действие[264]. Взятые в целом, эти объяснения подсказывают единую структуру того, как мозг придает смысл: это одна из наиболее удивительных загадок человеческой психики.

* * *

В мозге младенца нет большинства понятий, которые есть у взрослых. Малыши не знают, что такое телескопы, морские огурцы или пикники, не говоря уже о чисто ментальных понятиях вроде «причуда» или schadenfreude. Новорожденный в значительной степени эмпирически слеп. Неудивительно, что детский мозг не умеет хорошо предсказывать. Развитый мозг управляется прогнозом, но детский тонет в прогностических ошибках. Поэтому дети должны изучать мир с помощью сенсорных сигналов, прежде чем они смогут моделировать мир. Такое изучение является главной задачей детского мозга.

Поначалу многое из вала поступающих сенсорных сигналов является новым для мозга младенца, значимость сигналов не определена, поэтому игнорироваться будет немногое. Если сенсорный входной сигнал подобен камешку, прыгающему по волне мозговой активности, то для детей этот камешек — словно булыжник. Дети впитывают входные сигналы и учатся, учатся, учатся. Детский возрастной психолог Элисон Гопник говорит, что у малышей есть «фонарь» внимания, который светит ярко, но рассеянно. Напротив, мозг взрослого умеет игнорировать информацию, которая грозит помешать вашим предсказаниям; это позволяет вам действовать, как будто вы читаете книгу, не отвлекаясь. Вы обладаете встроенным «прожектором» внимания, который высвечивает некоторые вещи, например эти слова, оставляя при этом прочие вещи в темноте. А вот «фонарь» мозга младенца не может так фокусироваться[265].

Проходят месяцы, и, если все работает правильно, мозг ребенка начинает предсказывать более эффективно. Ощущения от внешнего мира становятся понятиями в его модели мира; то, что было снаружи, теперь становится внутри. Этот сенсорный опыт со временем создает для мозга младенца возможность совершать координированные прогнозы, которые объединяют разные чувства. Бурчащий живот в яркой комнате после пробуждения означает, что уже утро, а теплая влажность с ярким светом над головой означает время вечернего купания. Когда моей дочери Софии было несколько недель, мы использовали такие мультисенсорные прогнозы, чтобы помочь ей разработать режим сна, который бы не превращал нас в страдающих недосыпанием зомби. Мы воздействовали на нее различными песнями, историями, цветными одеялами и прочими церемониями, чтобы помочь ей статистически различать случаи ночного сна и дневного сна — так, чтобы она спала побольше или поменьше[266].

Как детский мозг, снабженный кучкой конкретных понятий и захваченный прогностическими ошибками, в конечном итоге постигает тысячи сложных, чисто ментальных понятий вроде «благоговения» или «отчаяния», каждое из которых является группой разнообразных случаев? Это технический вопрос, и его решение можно найти в архитектуре коры больших полушарий. Все сводится к некоторым базовым проблемам эффективности и энергии. Мозг ребенка должен постоянно учиться и обновлять свои понятия в изменчивой внешней среде. Для такой задачи требуется очень мощный, эффективный мозг. Однако у этого мозга есть практические ограничения. Его нейронные сети могут расти только до размера, соответствующего черепу, а череп при рождении должен пройти через таз. Кроме того, нейроны — это затратные клетки с точки зрения поддержания жизни (для них требуется много энергии), и поэтому у мозга есть ограничение на количество соединений, которые он может метаболически поддерживать и при этом работать. Соответственно, мозг ребенка должен передавать информацию эффективно, пропуская ее к минимально возможному количеству нейронов.

Решением этой технической проблемы является кора, которая представляет понятия таким образом, что сходства отделены от различий. Как вы сейчас увидите, такое разделение обеспечивает колоссальную оптимизацию.

Каждый раз, когда вы смотрите какой-нибудь видеоролик на YouTube, вы являетесь свидетелем такой эффективной передачи информации. Видеоролик — это последовательность неподвижных изображений, или кадров, которые показываются в быстрой последовательности. Однако кадры между собой сильно сходны, поэтому, когда сервер YouTube отправляет через интернет поток видеоинформации на ваш компьютер или телефон, ему не требуется посылать каждый пиксель из каждого кадра. Более эффективный путь — сообщать только то, что изменилось по сравнению с предыдущим кадром, поскольку неизменные части кадра уже были переданы. YouTube отделяет сходства в видеоролике от различий, чтобы ускорить передачу, а программное обеспечение на вашем компьютере или телефоне собирает эти кусочки в связное видеоизображение.

Человеческий мозг делает примерно это же, когда обрабатывает прогностические ошибки. Сенсорная информация от зрения крайне избыточна, как видео, и то же самое справедливо для звуков, запахов и остальных чувств. Мозг представляет эту информацию как схемы для возбуждения нейронов, и для него выгодно (и эффективно) представить ее минимально возможным числом нейронов.

Например, зрительная система представляет прямую линию как схему возбуждения нейронов в первичной зрительной коре. Предположим, что вторая группа нейронов возбуждается, чтобы представить вторую линию под углом 90 градусов к первой линии. Третья группа нейронов могла бы эффективно суммировать это статистическое отношение между двумя линиями как простое понятие «угол». Детский мозг может повстречаться с сотней разных пар пересекающихся отрезков различной длины, толщины и цвета, но принципиально все они будут случаями «угла», и каждый можно эффективно представить некоторой небольшой группой нейронов. Такие суммарные представления устраняют избыточность. Таким образом мозг отделяет статистические сходства от сенсорных различий.

Аналогичным образом случаи понятия «угол» сами являются частью других понятий. Например, если ребенок получает зрительный входной сигнал о лице своей матери со многих различных точек: когда кормят, когда сидят лицом к лицу, утром и вечером. Его понятие «угол» будет частью понятия «глаз», которое суммирует непрерывно изменяющиеся линии и контуры глаз матери, видимые под различными углами и при различном освещении. Для представления различных случаев понятия «глаз» возбуждаются различные группы нейронов, что позволяет ребенку распознавать эти глаза как глаза матери каждый раз, вне зависимости от сенсорных различий[267].

По мере того как мы идем от конкретных понятий к более общим (в нашем примере — от линии к углу и далее к глазу), мозг создает сходства, которые являются все более эффективными сводками информации. Например, «угол» — это эффективная сводка относительно линий, однако всего лишь сенсорная деталь относительно глаз. Та же самая логика работает для понятий «нос», «ухо» и так далее. В совокупности эти понятия являются частью понятия «лицо», случаи которого — еще более эффективные сводки сенсорных сигналов черт лица. В конечном итоге мозг ребенка формирует сводные представления для достаточного количества визуальных понятий, в которых он может видеть один объект, несмотря на невероятное разнообразие в сенсорных деталях более низкого уровня. Подумайте об этом: каждый из ваших глаз в мгновение передает в мозг миллионы крохотных кусочков информации, а вы просто видите «книгу».

Этот принцип — нахождение сходств на службе эффективности — описывает не только зрительную систему; он также работает в рамках всех сенсорных систем (для звуков, запахов, интероцептивных ощущений и т. д.), а также для сочетаний различных чувств. Рассмотрим чисто ментальное понятие, например «мать». Когда младенец утром берет грудь, в его различных сенсорных системах возбуждаются группы нейронов в статистически связанных шаблонах — чтобы представить зрительный образ матери, звук ее голоса, ее запах, тактильные ощущения от держания, увеличение энергии от кормления, ощущения полного животика, плюс удовольствие от еды и прижимания. Все эти представления взаимосвязаны, а их сводка представляется в схеме возбуждения небольшой группы нейронов как рудиментарное мультисенсорное понятие «матери». Во время кормления в тот же день, но попозже, аналогичным образом могут создаваться другие сводки для понятия «мать», когда будут использоваться аналогичные, но не в точности те же группы нейронов. И когда младенец лупит по качающейся игрушке над кроваткой, смотрит, как она раскачивается, и испытывает соответствующие тактильные и интероцептивные ощущения, связанные с уменьшением количества энергии из-за своих движений, то его мозг суммирует эти статистически связанные события как рудиментарный мультисенсорный случай понятия «я сам»[268].

Таким образом мозг ребенка соединяет сильно разбросанные схемы возбуждения для отдельных чувств в одну мультисенсорную сводку. Этот процесс уменьшает избыточность и представляет информацию для будущего использования в минималистической эффективной форме. Это похоже на сублимированную пищу, которая занимает меньше места, но перед едой ее нужно восстановить до исходного вида. Эта эффективность практична для мозга, формирующего рудиментарные понятия, такие как «мать» и «я сам», в результате научения.