Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — страница 10 из 45


При решении этой и следующей задачи используйте карандаш с резинкой, чтобы стирать неправильные варианты.

Признанный лидер среди изобретателей головоломок в Японии – инженер-химик Ноб Йошигахара, переживший в свое время взрыв в Хиросиме, оставивший на его теле следы от ожогов. К моменту своей смерти в 2004 году он стал одним из самых известных головоломщиков в мире. Йошигахара вел соответствующую рубрику в газете, был коллекционером, писал книги, разрабатывал игрушки, организовывал международные конференции. Друзья из всемирного сообщества любителей головоломок помнят его как харизматичного, великодушного и веселого человека. Копий его наиболее успешной игры – «Час пик», в которой игрок должен передвигать пластиковые легковые и грузовые автомобили по сетке дороги, – продано свыше десяти миллионов по всему миру.

Йошигахара также придумал головоломку «Числовое дерево», с которой начинается эта книга. Кроме того, он ввел новое условие в задачи об укладке татами. На рисунке ниже прямая линия (выделенная жирным) проходит с одной стороны комнаты к другой. В следующей головоломке ни одна линия не должна пересекать комнату от края до края.



Ответ

39. ТАТАМИ НОБА

Устелите пол комнаты пятнадцатью татами размером 2 × 1 метр так, чтобы ни одна прямая линия не пересекала комнату от одного края до другого. Четыре татами могут сходиться в одной точке углами.

Комнаты не всегда бывают прямоугольными! В представленной ниже задаче на месте двух угловых квадратов расположены лестницы.


Ответ

40. КОМНАТА С ЛЕСТНИЦАМИ В УГЛАХ

Если в комнате, взятой из двух предыдущих задач, вырезать противоположные углы, пол в ней можно выстлать четырнадцатью татами без щелей или нахлестов, как показано на рисунке ниже. (Татами можно укладывать в любом положении.) Давайте увеличим размер комнаты до 6 × 6 метров, вырезав углы под лестницы. Докажите, что в ней нельзя выстлать пол семнадцатью татами без щелей или нахлестов.


Впрочем, лестницы необязательно должны располагаться в углах комнаты. В следующей задаче положение двух лестниц выбрано случайным образом.


Ответ

41. КОМНАТА С ДВУМЯ ЛЕСТНИЦАМИ, РАСПОЛОЖЕННЫМИ В СЛУЧАЙНОМ ПОРЯДКЕ

Архитекторы решили, что не хотят размещать лестницы в противоположных углах комнаты размером 6 × 6 метров. При условии, что квадраты на полу комнаты окрашены подобно клеткам на шахматной доске (как на рисунке), а также что одна лестница расположена на белом, а другая на сером квадрате, докажите, что можно выстлать пол комнаты семнадцатью татами без щелей и нахлестов. Татами покрывают два смежных квадрата и могут размещаться как угодно, если только не закрывают два квадрата, где расположены лестницы.


В этой задаче вам необходимо доказать, что всегда можно покрыть весь пол комнаты, а не просто привести пример, при каких условиях это происходит.

Когда я опубликовал следующую задачу в своей колонке в Guardian, несколько архитекторов высмеяли ее простоту, поскольку решение представляет собой распространенную конструктивную особенность британских домов. Подобная реакция лишь подтверждает, что одним людям решение головоломок «взрывает» мозг, тогда как другим кажется слишком очевидным.


Ответ

42. ГОЛОВОЛОМКА С ДЕРЕВЯННЫМИ БЛОКАМИ

На рисунке представлен вид сверху и спереди трехмерной деревянной конструкции с плоскими сторонами. Нарисуйте хотя бы один ее вид сбоку.


Все видимые ребра отмечены сплошными линиями, а скрытые должны обозначаться пунктиром. Так, например, изображенный ниже объект, состоящий из двух квадратных граней с квадратными отверстиями и общим ребром, не может быть решением головоломки, поскольку при обозначении скрытых ребер в его виде сбоку, сверху и спереди использовались бы пунктирные линии, как показано на рисунке. Безусловно, на изображении вида сбоку вполне могут быть пунктирные линии, которыми отмечены скрытые ребра. Однако вид сверху или спереди не может иметь скрытых ребер, потому что это противоречит условиям задачи (на изображениях вида сверху и спереди нет пунктирных линий).



Две следующие головоломки предлагают нам войти в дом.

Кольца Борромео – удивительный предмет с любопытным свойством: несмотря на то что все три его кольца сцеплены между собой, удаление любого одного из них приводит к потере сцепления между двумя остальными, как показано на рисунке далее. (Если изготовить кольца из жесткого материала, то при их наложении друг на друга каждое разворачивается в несколько ином направлении, чем остальные, а значит, представленный ниже рисунок своего рода обман.) Мне нравится парадоксальность ситуации: никакие два кольца не сцеплены, но все вместе они неразделимы. Кольца Борромео – популярный символ взаимозависимости трех частей; они используются в христианской иконографии, например для обозначения Святой Троицы.

Эти кольца названы в честь итальянского семейства Борромео, жившего в эпоху Возрождения. Три сцепленных кольца изображены на семейном гербе этой фамилии, хотя сама идея трех объектов, связанных таким образом, возникла раньше. Валькнут – эмблема викингов в виде трех сцепленных треугольников – в настоящее время чаще всего встречается на татуировках, кулонах и футболках поклонников музыки хеви-метал.


Кольца Борромео состоят из трех связанных элементов, которые полностью распадаются при исключении одной части. Аналогичная идея лежит в основе следующей головоломки.


Кольца Борромео


Валькнут


Ответ

43. КАРТИНА НА СТЕНЕ

Обычно, чтобы повесить картину на двух гвоздях, веревку цепляют за оба гвоздя, как показано на рисунке.

Преимущество такого способа состоит в том, что, если один гвоздь выпадет, картина продолжит висеть, поскольку будет держаться на втором гвозде.

Сможете ли вы придумать способ так обернуть веревку вокруг гвоздей, чтобы картина падала на пол при извлечении одного из них? (В случае необходимости веревку можно удлинить.)


Кольца и предметы домашнего обихода естественным образом приводят нас к математической идее кольца для салфеток. Именно такая фигура получится, если просверлить цилиндрическое отверстие в шаре таким образом, чтобы центр отверстия проходил через центр шара.

Следующая головоломка особенно интересна тем, что в ней очень мало данных.



Ответ

44. ПРИМЕЧАТЕЛЬНОЕ КОЛЬЦО ДЛЯ САЛФЕТОК

Высота кольца для салфеток – 6 сантиметров. Чему равен его объем?

Решение этой головоломки предполагает большое количество рутинной работы, но пусть вас это не пугает. Я помогу вам начать ее решать. Поверьте, это потрясающая задача.

Объем кольца для салфеток равен разности между объемом шара и объемом подлежащей удалению центральной части в виде цилиндра с выпуклыми верхней и нижней поверхностями – куполами.



Высота цилиндра составляет 6 сантиметров. Пусть r – радиус шара, h – высота купола, a – радиус поперечного сечения цилиндра, который также является радиусом основания купола. Далее вам понадобятся только формулы объема, которые я с удовольствием привожу ниже.


Формула объема шара: πr3


Формула объема цилиндра: πa2 × 6 см, или 6πa2


Формула объема каждого купола:


Мы уже близки к решению. Объем кольца для салфеток равен объему шара минус объем цилиндра минус двойной объем купола. С помощью теоремы Пифагора мы можем выразить a через r, а также h через r. Следовательно, можно записать объем кольца для салфеток в виде выражения, в котором r – единственная переменная. Это будет длинное выражение, содержащее множество r и π.

Чего же вы ждете?!


Историк Геродот писал, что геометрия была изобретена в Египте при измерении площади участков пахотной земли, затопленной Нилом. Вычисление площади квадратов и прямоугольников до сих пор остается одной из первых задач, которые мы изучаем в геометрии. Для этого необходимо умножить одну сторону на другую, смежную.

Эта простая процедура – все, что вам нужно для решения головоломки под названием Menseki Meiro («Неразбериха с площадями»), придуманной японским изобретателем Наоки Инаба.

Далее вы увидите пример такой головоломки и сможете разобраться в ее сути. Ваша задача – найти отсутствующее значение. Обозначенные на рисунке расстояния не соответствуют реальным размерам фигур, поэтому получить ответ посредством измерения не получится.



Красота этой головоломки в том, что решить ее вы должны геометрически, с помощью целых чисел. Не разрешается портить свою работу уравнениями или – боже упаси! – дробями. Для того чтобы справиться с задачей, дополните большой прямоугольник так, как показано на рисунке ниже. Площадь прямоугольника A должна составлять 20 см2, так как равна 4 × 5 сантиметров. Это означает, что сумма площадей прямоугольника A и нижнего прямоугольника равна 20 + 16 = 36 см2, что эквивалентно площади большого прямоугольника слева. Поскольку прямоугольники имеют одинаковую высоту, у них должна быть и одинаковая ширина, а значит, отсутствующее значение – 5 сантиметров.



Ответ

45. НЕРАЗБЕРИХА С ПЛОЩАДЯМИ