– «восстановление». Багдадский ученый IX столетия Аль-Хорезми использовал это слово для обозначения математической операции, которая в современной науке подразумевает взятие какого-нибудь члена из одной части уравнения и его «восстановление» в другой. С помощью восстановления и других операций Аль-Хорезми разработал методы решения простых уравнений.
Египетский математик Абу Камил, живший в IX–X веках, написал ряд работ с подробным анализом идей Аль-Хорезми. В одной из них шла речь о задачах с покупкой 100 птиц за 100 денежных единиц. «Мне известен тип задач, который может показаться захватывающим, оригинальным и притягательным людям как высокого, так и низкого положения, как ученым, так и безграмотным, – писал он. – Однако, обсуждая друг с другом решения, люди обмениваются не совсем верными суждениями и догадками, поскольку не видят наглядного принципа или системы… Чтобы сделать этот вопрос понятнее, я решил написать книгу».
Давайте решим эту задачу. У нас есть два уравнения:
1. x + y + z = 100 (поскольку всего должно быть 100 птиц).
2. 5 x + 4 y + z/4 = 100 (потому что общая сумма составляет 100 единиц).
Как правило, для решения подобных уравнений (в школе их называют системой уравнений) необходимо столько уравнений, сколько есть переменных. Например, для трех переменных нам понадобится три уравнения.
В данном случае у нас два уравнения. Однако уравнение предоставляет нам дополнительную информацию, позволяющую решить задачу. Мы можем исходить из того, что птицы не продаются половинами, четвертями и что их количество не может обозначаться отрицательной величиной. (Давайте предположим, что нам необходимо купить как минимум одну особь.) Следовательно, значения x, y и z должны быть натуральными числами и, разумеется, меньше 100.
Приступим к работе. Умножьте второе уравнение на четыре, чтобы избавиться от дроби:
(1) 20 x + 16 y + z = 400.
После нескольких операций «восстановления» получится, что
z = 400 – 20 x – 16 y.
Подставив это значение вместо z в уравнении (1), получим:
(2) x + y + 400 – 20x – 16 y = 100.
Это уравнение можно привести к такому виду:
19 x + 15 y = 300.
Теперь у нас есть одно уравнение с двумя переменными, которое можно решить с учетом других условий. Единственные положительные целые значения x и y, которые мы можем в него подставить, найденные методом проб и ошибок, – это x = 15 и y = 1. (Обратите внимание: 300 делится на 5, а значит, 19x + 15y тоже делится на 5, поэтому x должно быть кратным 5. Этому условию отвечают только значения x = 5, 10 и 15, но подстановка первых двух значений не позволяет решить уравнение.) Следовательно, z = 100 – x – y = 100 – 16 = 84.
Ответ: за 100 денежных единиц можно купить 15 петухов, 1 курицу и 84 цыпленка.
В своем труде Абу Камил пишет, что в зависимости от цены трех птиц у этой задачи иногда есть одно решение (как в данном примере), а порой ни одного или, наоборот, несколько. В пример он приводит следующую задачу.
Если утка стоит 2 драхмы[21], голубь – половину, а куры треть драхмы, сколько уток, кур и голубей у вас будет, когда вы купите 100 птиц за 100 драхм?
Помимо изобретения новой математики средневековые арабские ученые также приняли индийскую систему счисления, состоящую из десяти цифр, включая ноль. Арабские цифры (1, 2, 3, 4, 5, 6, 7, 8, 9 и 0) пришли в Европу примерно в XIII веке. Одной из первых европейских книг, где они использовались, была Liber Abaci («Книга абака», или «Трактат по арифметике») итальянского математика Леонардо Пизанского (Фибоначчи). Этот труд содержит сведения о вычислениях и измерениях, а также математические головоломки, в том числе задачи о птицах, такие как следующая.
Купите 30 птиц за 30 динариев: куропаток по 3 динария, голубей по 2 динария и воробьев по ½ динария. Эта задача решается замечательным образом, поэтому предоставляю вам возможность сделать это самостоятельно.
На протяжении трех следующих столетий почти все авторитетные математики эпохи Возрождения предложили свои варианты этой задачи, где шла речь о покупке дроздов, жаворонков, иволг, мухоловок, скворцов, гусей, каплунов и прочих пернатых. Такие задания оказались не только занимательным развлечением, но и обеспечили нас данными об истории южно-европейской орнитологии и гастрономии.
Решив одну задачу о птицах, вы сможете решить их все; для этого необходимо просто записать условия в виде системы уравнений и найти ответ в виде целых чисел.
Во многих других головоломках ситуацию также следует представить как систему уравнений. Как правило, в них не хватает уравнений для всех переменных, поэтому при решении приходится полагаться на тщательно продуманный метод проб и ошибок или математическое озарение. Следующая задача – моя любимая, причем не только потому, что количество данных кажется невероятно скудным (всего два уравнения на четыре переменные), но и потому, что фигурирующее в ней число имеет непосредственное отношение к известному бренду.
Покупатель заходит в магазин 7-Eleven и покупает несколько товаров.
– С вас 7,11 фунта, – говорит кассир.
– Забавно… – отвечает покупатель.
– Да, – говорит кассир, – я только перемножил цены этих четырех товаров.
– А разве вы не должны были их сложить?
– Согласен, но сумма цен дает то же число.
Сколько стоит каждый товар?
Для решения задачи нужно знать пару простых математических фактов. Во-первых, простое число – это целое число, которое делится только на себя и на 1. Список простых чисел начинается так:
2, 3, 5, 7, 11, 13, 17, 19…
Во-вторых, нужно знать основную теорему арифметики и, самое важное, главное правило простых чисел, а именно: каждое целое число можно представить в виде произведения уникального множества простых чисел. Например:
60 = 2 × 2 × 3 × 5
711 = 3 × 3 × 79
123 456 = 2 × 2 × 2 × 2 × 2 × 2 × 3 × 643
В каждом случае число можно разбить на простые множители только одним способом. Возможно, вы принимали это правило как нечто само собой разумеющееся, даже не зная его названия. Как бы там ни было, основная теорема арифметики поможет вам составить одно из уравнений, необходимых для решения данной задачи.
Для деления больших чисел на простые множители вам может понадобиться калькулятор или компьютер. Но даже несмотря на это, задача остается невероятно увлекательной.
Что связывает великого математика XIX столетия Симеона Дени Пуассона с актером Брюсом Уиллисом, героем голливудских боевиков? Оба решили представленную ниже головоломку. Биограф Пуассона писал, что эта головоломка стала той искрой, которая разожгла интерес юного француза к математике. «Без всяких размышлений о таких вещах, не зная ни условных обозначений, ни алгебраических методов, без какой-либо предварительной подготовки он решил [ее] самостоятельно – и в тот самый день почувствовал, что в нем родилась любовь к математике, от которой он не должен отказываться. Так начался его путь к славе». Браво!
На Брюса Уиллиса эта головоломка повлияла столь же жизнеутверждающе. В фильме «Крепкий орешек 3: Возмездие» он и актер Сэмюэл Джексон решили эту задачу, чтобы обезвредить бомбу с часовым механизмом. Если это смогли сделать Уиллис и Джексон, сможете и вы.
У вас есть 8-литровый кувшин с вином и два пустых кувшина емкостью 5 и 3 литра. Ни на одном из них нет мерной шкалы.
Налейте в один из кувшинов ровно 4 литра вина.
Впервые эта задача появилась в летописи XIII века аббата Альберта из городка Штаде близ Гамбурга. Этот опус включает самое подробное описание средневекового похода паломников из Северной Европы в Рим, написанное в форме диалога между двумя странствующими монахами Тирри и Фирри. В их шутливых беседах содержится несколько головоломок. «Раздели вино, – говорит Тирри Фирри, поддразнивая его задачей с тремя кувшинами, – иначе останешься без ничего».
Решать эту головоломку действительно весело, и я предоставляю вам возможность сделать это обычным способом, то есть, переливая вино из одного кувшина в другой, посмотреть, чем это закончится. Сделайте это, прежде чем продолжите читать.
Теперь я покажу вам другой способ решения задачи о трех кувшинах, используя шары, перемещающиеся по бильярдному столу необычной формы.
Бильярдный стол (см. рисунок) представляет собой параллелограмм со сторонами пять и три единицы, состоящий из равносторонних треугольников. Я обозначил их на рисунке, поскольку эти треугольники образуют систему координат (x, y). В ней значения x расположены по горизонтали, а y – по диагонали.
На следующем рисунке показано, что произойдет, если поместить шар в позицию с координатой (5; 0) и отправить его вдоль стороны треугольника. Шар отскочит от стенок бильярдного стола в точках (2; 3), (2; 0), (0; 2), (5; 2) и (4; 3), прежде чем двинется дальше. (Математические бильярдные столы лишены трения, поэтому шары перемещаются в том направлении, в каком вы их отправляете.)
А теперь рассмотрим удар по шару, расположенному в точке (0; 3). Он отскочит от стенок в точках (3; 0), (3; 3), (5; 1), (0; 1), (1; 0), (1; 3) и (4; 0), прежде чем продолжит свой путь.
Давайте тщательнее проанализируем эти координаты: