Эта модель с точки зрения топологии имеет такую же форму, что и полосы в предыдущей задаче: в обоих случаях у нас есть три соединенные на концах «пряди». Однако эту модель мы изготовили из шнура, чтобы было удобнее исследовать некоторые из ее физических свойств.
Датский поэт и специалист по занимательной математике Пит Хейн популяризовал следующую головоломку, после того как во время своих частых визитов в Институт теоретической физики Нильса Бора в Копенгагене в 1930-х годах узнал о «струнной модели».
Удерживая левый конец картона и струнной модели, поверните правый конец и пропустите между двумя верхними фрагментами струны до полного оборота, как показано на рисунке А. Для того чтобы получить полный оборот, надпись «лицевая сторона» снова должна быть повернута вверх. Модель будет выглядеть, как на рисунке В. Теперь поверните правый конец и пропустите его между двумя нижними фрагментами шнура до полного оборота. Расположение шнуров должно быть таким, как на рисунке С.
Можете ли вы распутать струны, не поворачивая ни одну из картонок?
Для того чтобы увериться, что вы не повернете картонки, держите левую картонку в левой руке, а правую – в правой. Надпись «лицевая сторона» всегда должна быть сверху на обеих картонках, а сами они должны располагаться на одном уровне. Поскольку картонки нельзя вращать, вы можете только пропускать их между струнами. Продолжайте делать это – и струны распутаются.
Это восхитительно! Из всех головоломок, представленных в данной главе, эта доставляет мне наибольшее наслаждение. Что может быть приятнее распутывания переплетенных струн без особых усилий?
Чтобы не лишать вас удовольствия, я решил не печатать ее решение в разделе ответов. Вам придется разобраться в ней самостоятельно. Как только вы это сделаете, вы так увлечетесь, что наверняка захотите решить еще одну подобную задачку. В этом случае просто повторите описанные выше действия с условием, что левую картонку нужно будет закрепить, а правой сделать два полных оборота. При первом обороте вы можете пропустить картонку между двумя верхними струнами с обратной стороны или между двумя нижними либо с лицевой, либо с оборотной стороны. А можете просто повернуть картонку вокруг своей оси на 360 градусов. Второй оборот также может быть выполнен одним из вышеперечисленных способов.
Если вы сделаете только один оборот, распутать струны посредством пропускания картона между ними будет невозможно. Но при двух оборотах переплетение можно распутать, какой бы способ вращения вы ни выбрали.
Пит Хейн считал, что решение этой головоломки доставит вам наибольшее удовольствие, если превратить ее в игру с двумя участниками; он назвал ее «Танглоиды». Один игрок держит левый конец модели, а другой – правый. Первый игрок делает два оборота своей картонки, а его визави должен распутать образовавшееся переплетение. Игроки меняются местами, а побеждает тот, кто быстрее распутает струны.
Самое удивительное свойство струнной модели в том, что переплетение, полученное в результате двойного оборота, всегда можно распутать, а образованное одним оборотом – нельзя; эта особенность помогает объяснить поведение определенных вращений в пространстве. Видимо, по этой причине данная модель интересовала Нильса Бора и его коллег. Британский физик Поль Дирак, проведший некоторое время в Копенгагене, использовал данную модель в качестве наглядного пособия для иллюстрации того факта, что «фундаментальная группа вращений в трехмерном пространстве имеет единственный генератор второго порядка».
Как вы уже убедились, порой хорошая головоломка похожа на фокус, а порой может служить блестящим объяснением серьезных научных концепций.
10 увлекательных головоломок. Умнее ли вы 13-летнего ребенка?
1. Сколько из приведенных ниже утверждений истинны?
Ни одно из этих утверждений не истинно.
Лишь одно утверждение истинно.
Лишь два утверждения истинны.
Все утверждения истинны.
Варианты ответов: а) 0; б) 1; в) 2; г) 3; д) 4.
2. Какая из фигур не может образоваться при наложении двух одинаковых квадратов?
Варианты ответов: а) равносторонний треугольник; б) квадрат; в) дельтоид[33]; г) семиугольник; д) правильный восьмиугольник.
3. Только одно из следующих уравнений верно? Какое именно?
Варианты ответов:
а) 442 + 772 = 4477;
б) 552 + 662 = 5566;
в) 662 + 552 = 6655;
г) 882 + 332 = 8833;
д) 992 + 222 = 9922.
4. Сколько существует способов расположения в один ряд пяти переключателей во включенном или выключенном положении таким образом, чтобы никаких два соседних переключателя не находились в выключенном положении?
Варианты ответов: а) 5; б) 10; в) 11; г) 13; д) 15.
5. В приведенной ниже записи сложения буквами обозначены разные цифры; буквой S обозначена цифра 3. Чему равно значение Y × O?
Варианты ответов: а) 0; б) 2; в) 36; г) 40; д) 42.
6. Электронные часы показывают часы, минуты и секунды. Сколько раз за каждые 24 часа все шесть цифр меняются одновременно?
Варианты ответов: а) 0; б) 1; в) 2; г) 3; д) 4.
7. Один из следующих кубов – наименьший куб, который может быть записан в виде суммы трех положительных кубов. Что это за число?
Варианты ответов: а) 27; б) 64; в) 125; г) 216; д) 512.
8. В последовательности чисел каждый четвертый член представляет собой сумму трех предыдущих членов. Первые три члена – это −3, 0, 2. Какой по счету номер первого члена этой последовательности, превышающего значение 100?
Варианты ответов: а) 11-й; б) 12-й; в) 13-й; г) 14-й; д) 15-й.
9. Страницы книги пронумерованы: 1, 2, 3… Для того чтобы пронумеровать все страницы, понадобится 852 цифры. Назовите номер последней страницы.
Варианты ответов: а) 215; б) 314; в) 320; г) 329; д) 422.
10. На рисунке изображен единичный куб (то есть куб, длина ребра которого равна 1), окрашенный в голубой цвет. Предположим, что к каждой из его шести граней приклеены единичные кубы голубого цвета, образующие трехмерный крест. Сколько единичных кубов желтого цвета понадобится для того, чтобы оклеить все свободные грани этого креста?
Варианты ответов: а) 6; б) 18; в) 24; г) 30; д) 36.
Глава 5. Игры с числами. Задачи для сторонников чистоты жанра
Сборник математических задач не был бы полным без числовых головоломок. Речь идет не о головоломках, основанных на числах (в предыдущих главах мы видели их предостаточно), а о тех логических задачах, которые без всякого стеснения превозносят числа и раскрываемые ими закономерности. В их условия не нужно вводить никакие предметы и приемы, чтобы повысить заинтересованность в их решении. Процесс приносит удовольствие уже сам по себе. Но даже несмотря на такую особенность, головоломки с числами бывают невероятно забавными. Развлечением может стать даже такое простое арифметическое действие, как сложение.
Можете ли вы просуммировать числа от 1 до 100?
В XVIII столетии великий математик Карл Гаусс мгновенно решил эту старую задачку, еще когда носил короткие штанишки. Во всяком случае, так гласит легенда. Учитель ожидал, что мальчик станет складывать числа по одному, но гениальный ученик нашел закономерность.
Чтобы найти сумму чисел
1 + 2 + 3 + 4 + … + 97 + 98 + 99 + 100,
можно просуммировать пары крайних чисел:
(1 + 100) + (2 + 99) + (3 + 98) + (4 + 97) + … + (50 + 51).
Сумма этих пар чисел всегда одна и та же:
101 + 101 + 101 + 101 + … + 101.
Следовательно, общая сумма равна 50 раз по 101, или 50 × 101 = 5050.
Умница Карл! Эту историю обычно рассказывают так, будто Гаусс был первым, у кого возникла такая идея. Однако эта задача была включена в сборник Алкуина «Задачи для развития молодого ума» еще тысячу лет назад.
У лестницы 100 ступеней. На первой сидит один голубь, на второй – два, на третьей – три и так далее до сотой ступени. Сколько всего голубей сидит на лестнице?
Хотя задача сформулирована иначе, арифметика в ней та же – сложение чисел от 1 до 100. Решение Алкуина также подразумевало сложение пар, но других. Он находил сумму первой и последней ступеней лестницы, получив 1 + 99 = 100, затем второй и предпоследней и т. д.
Следовательно, сумма равна (1 + 99) + (2 + 98) + (3 + 97) + … + (49 + 51) плюс 50 с пятидесятой ступени и 100 с сотой ступени, что равно:
(49 ×100) + 50 + 100 = 4900 + 150 = 5050.
Хотя решение Алкуина более громоздкое, чем Гаусса, оно легче, поскольку умножить на 100 проще, чем на 101. Если вы, подобно Алкуину, используете римские цифры, делайте так, как он.