Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — страница 21 из 45

Соль этих двух головоломок в том, что, если вам предлагают вычислить сумму большой группы чисел, не воспринимайте задание буквально, а попытайтесь найти закономерность.

Ниже представлены три замечательные головоломки со счетом. При их решении вы сможете применить этот принцип на практике.

101. ЗЕРКАЛО, ЗЕРКАЛО

Какая из двух сумм больше?


Ответ

102. ИНТЕЛЛЕКТ КАК У ГАУССА

Ниже в порядке возрастания приведены 24 четырехзначных числа, состоящие из цифр 1, 2, 3 и 4. Вычислите сумму этих чисел.


1234 1423 2314 3124 3412 4213

1243 1432 2341 3142 3421 4231

1324 2134 2413 3214 4123 4312

Ответ

103. СУММА ЧИСЕЛ В ТАБЛИЦЕ

А теперь запишем числа в таблицу. Вы знаете, что делать. Чему равна их сумма?


Следующие три головоломки – настоящая поэзия в математике. В каждой есть схема с девятью пустыми ячейками, в которых должны находиться цифры от 1 до 9. Восхитительно видеть, как простейшие числовые элементы – значащие цифры – изящно располагаются в пустых ячейках.

Существует 24 192 способа разместить девять цифр в каждой из этих схем. Если проверять новую комбинацию каждую секунду, то, чтобы перебрать все варианты, понадобилось бы больше двух недель. Так что попытайтесь найти способ сократить количество возможных комбинаций.


Ответ

104. ЦИФРЫ В КВАДРАТАХ

 –  =

×

÷ =

=

 +  = .


Ответ

105. УРАВНЕНИЯ-«ПРИЗРАКИ»

×  = .

×  = .


Ответ

106. ЧИСЛА В КРУГАХ

В этой головоломке содержатся три задачи. Заполните пустые ячейки так, чтобы сумма цифр в каждом круге равнялась 11. Решите эту задачу еще раз, чтобы сумма чисел в каждом круге составляла 13, и еще раз, чтобы сумма была равна 14.



Книга Томаса Дилворта The Schoolmaster’s Assistant, Being a Compendium of Arithmetic both Practical and Theoretical («В помощь учителю: краткое руководство по практической и теоретической арифметике») вышла в 1743 году и стала чрезвычайно популярным учебником по математике в Великобритании и США. В ней есть такая задача:

Джек говорит своему брату Гарри: «Я могу связать четыре тройки знаками математических операций таким образом, что они образуют число 34. Сможешь ли ты сделать то же самое?»

Ответ такой: 33 +  = 34.


В книге Дилворта впервые появились головоломки, в которых требовалось связать четыре одинаковые цифры знаками математических операций и получить определенное число. В трех предыдущих задачах из этой главы заданы математические операции, а тот, кто решает задачу, должен разместить числа между соответствующими знаками. В представленных ниже головоломках даются числа, между которыми нужно расставить знаки математических операций. Самый распространенный вариант головоломок такого рода – это задача о четырех четверках, впервые упомянутая спустя столетие после Дилворта. В 1881 году автор под псевдонимом Cupidus Scientiae (Жаждущий науки) написал в британском журнале Knowledge: an Illustrated Magazine of Science следующее: «Возможно, некоторым читателям это покажется столь же новым, как и мне, когда на днях мне впервые продемонстрировали, что все числа до двадцати включительно (и даже больше), кроме разве что числа 19, можно представить в виде четырех четверок, воспользовавшись любыми необходимыми математическими знаками за исключением знаков возведения в квадрат и куб».

«Четыре четверки» – невероятно интересная головоломка, забавная, простая и увлекательная. Поистине удивительно, сколько чисел можно составить с помощью цифр 4, 4, 4 и 4 – не больше и не меньше. Однако нам следует внести ясность в утверждение Cupidus Scientiae о том, какие для этого существуют возможности и какие знаки разрешается использовать.



Ответ

107. ЧЕТЫРЕ ЧЕТВЕРКИ

1. С помощью четырех четверок составьте все числа от 0 до 9. Разрешается применять только основные математические операции, такие как сложение, вычитание, умножение, деление, и скобки. Помните: для выражения каждого числа необходимо использовать все четыре четверки.

2. С помощью четырех четверок составьте все числа от 10 до 20. В дополнение к основным знакам математических операций можно использовать квадратный корень, а также запятую для обозначения нецелых чисел, например 0,4. Кроме того, можно объединять цифры в группы – скажем, 44, или 444, или даже 4,4.

3. После того как немного разогреетесь, проделайте то же самое с числами от 21 до 50. Разрешается использовать возведение в степень, то есть 44, а также знак факториала «!», как в выражении 4!. (Для того чтобы получить факториал числа, необходимо умножить его на каждое меньшее число, например: 4! = 4 × 3 × 2 × 1 = 24.)


Я помогу вам начать решать эту задачу. Вот как можно получить 0 из четырех четверок:


4 – 4 + 4–4 = 0


Очень просто. А вот как можно получить 1:



Насколько далеко мы можем зайти после числа 50? Очень далеко. С помощью перечисленных выше математических операций мы можем составить из четырех четверок все числа до 100, за исключением чисел 73, 77, 87 и 99, хотя даже их можно получить благодаря находчивому применению дополнительных математических символов. Например:



поскольку четыре четверти составляют 100 процентов.

В издании книги «Математические эссе и развлечения» 1911 года Уолтер Роуз Болл о «четырех четверках» писал: «Никогда не встречал этой занимательной задачи в печатных изданиях, но, похоже, она старая и широко известная».

Роуз Болл утверждал, что с помощью четырех четверок можно составить все числа до 170. До выхода издания 1917 года Роуз Болл был поглощен работой над этой головоломкой. «Если мы допустим использование целых показателей степени и применение факториалов, – писал он, – то сможем добраться до числа 877». Далее он отметил: «С помощью четырех единиц мы можем получить число 34, четырех двоек – число 36, четырех троек – число 46, четырех пятерок – число 36, четырех шестерок – 30, четырех семерок – 25, четырех восьмерок – 36, четырех девяток – 130». Интересно, что с помощью четырех четверок можно зайти дальше всего.

Удалось ли кому-либо сделать это? Да! На протяжении следующего десятилетия математик и физик Поль Дирак (с ним мы уже встречались в конце предыдущей главы) решил задачу о четырех четверках для всех чисел до бесконечности. Его решение касалось задачи с четырьмя двойками – в то время она была весьма популярна в Кембридже, – но оно верно и для задачи о четырех четверках.

Если разрешено применять логарифмы, то любое число n можно представить в следующем виде: где n – количество квадратных корней в выражении. (Не огорчайтесь, если не понимаете логарифмы; вам нужно всего лишь по достоинству оценить поразительную лаконичность и масштабируемость решения.) Дираку нравились математические головоломки, и, по всей вероятности, он был в восторге от того, что ему удалось обобщить знаменитую задачу с помощью столь изобретательной формулы. «Он сделал эту задачу бессмысленной», – писал Грэм Фармело в биографии Поля Дирака The Strangest Man («Самый странный человек»).


В 1882 году, через год после первой публикации задачи с четырьмя четверками в журнале Knowledge, американский «импресарио» головоломок Сэм Лойд опубликовал «задачу Колумба» – самую замечательную и самую абсурдную из всех задач категории «заданы числа – найдите операции». За лучшее решение он предложил приз в размере 1000 долларов (около 20 тысяч фунтов в современном эквиваленте) – и получил только два правильных ответа из нескольких миллионов. Во всяком случае, так он утверждал. Лойд был столь же талантлив в вопросах саморекламы, как и в изобретении головоломок. Я привожу здесь эту головоломку для полноты картины, а не потому, что думаю, будто вы сможете ее решить. Ну же, докажите, что я не прав!


Ответ

108. ЗАДАЧА КОЛУМБА

Расположите следующие семь цифр и восемь точек таким образом, чтобы их сумма была как можно ближе к числу 82.

∙4 5 6 7 9 0


Точки можно использовать двумя способами: во-первых, в качестве десятичного разделителя; во-вторых, в качестве символа периода десятичной дроби, который ставится над цифрой или цифрами. Если точка стоит над одной цифрой, значит, данная цифра повторяется бесконечно. Другими словами, можно записать как вместо 0,3333… Если точка стоит над двумя цифрами, бесконечно повторяется последовательность цифр, которая начинается с первой цифры и заканчивается последней. Таким образом, можно записать как вместо 0,142857142857142857…

Итак, начало положено. Но прежде чем двигаться дальше, попробуйте решить следующую головоломку, чтобы нейтрализовать послевкусие.


Ответ

109. ТРОЙКИ И ВОСЬМЕРКИ

Можете ли вы получить число 24 из цифр 3, 3, 8 и 8?

Разрешается использовать только основные математические операции: сложение, вычитание, умножение, деление и внесение выражений в скобки.

Несколько лет назад следующая головоломка с числами распространилась словно вирус. Ее предваряли такими словами: «Дошкольники могут решить эту задачу за пять – десять минут, программисты – за час, а люди с высшим образованием… что же, проверьте сами!» Не уверен, что эти слова получили научное подтверждение, но они действительно вызывали желани