Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — страница 24 из 45

9 × 5 см = 512 × 5 см = 25,6 м, что примерно равно длине теннисного корта, которая равна 23,8 метра. Однако, согласно отчету Центра междисциплинарных наук при Университете Лестера, эта длина намного меньше возможной максимальной длины носа Пиноккио. Расчеты специалистов центра показывают, что если деревянная голова Пиноккио весит 4,18 килограмма, а нос – 6 граммов, первоначальная длина которого составляет один дюйм (2,54 см), то нос сломается только после 13 случаев вранья, когда он вырастет до 208 метров.

К тексту


3. в) eighteen (18).

В слове eighteen (18) восемь букв, а число 18 не кратно 8.

К тексту


4. г) Эми – крайняя слева.

Эми находится по левую сторону и от Бена, и от Криса. Следовательно, эти трое стоят в таком порядке: Эми, Бен, Крис или Эми, Крис, Бен. Это все, что нам известно, поэтому утверждение «г» однозначно верно. Ни одно из оставшихся утверждений не должно быть истинным, хотя утверждение «б» может быть истинным.

К тексту


5. E.

Эту задачу можно решить методом проб и ошибок. Можно также доказать следующее правило: чтобы нарисовать изображение, не отрывая карандаша от бумаги и не проводя карандашом по линии повторно, оно должно содержать не более двух точек, в которых сходится нечетное количество линий. Этому условию удовлетворяет только ответ E, поскольку на изображении вообще нет точек, в которых сходится нечетное количество линий, тогда как на других рисунках таких точек больше двух[38].

К тексту


6. б) 2.

Надеюсь, вы знаете хотя бы таблицу умножения на семь! В таком случае для вас не станет неожиданностью тот факт, что 35 делится на 7, а значит, и 350 000 делится на 7. На 7 делится также 49, и 4900. Поскольку 354 972 = 350 000 + 4900 + 72, остается только найти остаток от деления 72 на 7. Так как 7 × 10 = 70, остаток равен 2.

К тексту


7. в) 4.

В семье должно быть по меньшей мере два мальчика, поскольку если бы мальчик был только один, у него не было бы брата, что противоречит условиям задачи. Аналогично, в семье должно быть по меньшей мере две девочки, а значит, в семье минимум четверо детей.

К тексту


8. д) 9.

Просто выполните это забавное умножение на любом клочке бумаги – и задача решена.



К тексту


9. а) 3.

Надеюсь, на вашем листе бумаги еще осталось место. Впишите в пустые клетки пирамиды (начиная сверху и слева направо) буквы p, q, r; в правую крайнюю клетку в четвертом ряду s и в пятом ряду между клетками с числом 9 и буквой х – t. Вот необходимые вычисления:

p = 105 – 47 = 58;

q = p – 31 = 58–31 = 27;

r = 47 – q = 47–27 = 20;

s = r – 13 = 20–13 = 7;

t = 13 – 9 = 4;

х = s – t = 7–4 = 3.

К тексту


10. а) 2.

С моей стороны было бы неучтиво не включить задачу на деление в столбик, в результате чего получим поэтому десятичная дробь содержит только две разные цифры.

К тексту

Глава 1. Капуста, неверные мужья и зебра. Логические задачи
1. ВОЛК, КОЗА И КАПУСТА

Решить задачу с девятью переправами можно следующим образом. (Надо отметить, что, по условиям задачи, мужчин нельзя назвать джентльменами еще и потому, что женщины вынуждены грести по меньшей мере во время шести переправ – а может, и во время всех.) В целом стратегия такова: нужно взять первую пару, а затем вторую и третью и т. д. при условии, что братья всегда сходят на берег раньше сестер.



При более строгом соблюдении условий второй шаг недопустим, поскольку, когда сестра из первой пары вернется на левый берег, она окажется без сопровождения брата в присутствии мужчин, не состоящих с ней в родстве. В этом случае самое быстрое решение потребует одиннадцати переправ. Суть задачи о волке, козе и капусте состояла в том, что для переправы всего имущества через реку требовалось перевезти на другой берег один объект, затем вернуть его назад и снова перевезти. В данной задаче мы должны перевезти каждую сестру на другой берег, вернуть назад и снова переправить через реку.

Вот еще один из способов сделать это.



К тексту

2. ТРОЕ МУЖЧИН И ИХ СЕСТРЫ

Именно такое решение предложил Алкуин, оно же зашифровано в гекзаметре на латыни (в той версии, в которой пары состоят из мужа и жены). Вот примерный перевод этого гекзаметра.

Женщины, женщина, женщины, жена, мужчины, мужчина и жена,

Мужчины, женщина, женщины, мужчина, мужчина и жена.

К тексту

3. ПЕРЕХОД ЧЕРЕЗ МОСТ (С НЕБОЛЬШОЙ ПОМОЩЬЮ МОИХ ДРУЗЕЙ)

Стратегия, упомянутая мной в тексте, состоит в том, чтобы Джон, который ходит быстрее всех, перевел каждого из своих друзей через мост по одному. Джон переводит Пола за 2 минуты и возвращается за 1 минуту. Затем он переводит Джорджа за 5 минут и возвращается за 1 минуту. И наконец, переводит Ринго за 10 минут. Суммарное время составляет 2 + 1 + 5 + 1 + 10 = 19 минут.

Сначала эта стратегия кажется оптимальной без всяких доказательств. Почему бы не использовать каждый раз самого быстрого человека? Однако на самом деле целесообразнее собрать вместе двух человек, передвигающихся медленнее всех. Вот как это сделать:


1. Так же как и в предыдущем случае, Джон переводит Пола на другую сторону за 2 минуты и возвращается назад за 1 минуту.

2. Далее Джордж и Ринго переходят через мост вместе, что занимает у них 10 минут.

3. Они передают фонарь Полу, который возвращается по мосту, прибавив 2 минуты.

4. Джон и Пол совершают последний переход, потратив на это еще 2 минуты.


Суммарное время составляет 2 + 1 + 10 + 2 + 2 = 17 минут.

Эта головоломка превосходна, поскольку в ней действие, которое на первый взгляд кажется нерациональным (уменьшить участие Джона), на самом деле именно то, что нужно совершить. Такое решение вызывает восхищение.

Чтобы понять, почему двум друзьям, передвигающимся медленнее всех, лучше всего идти вместе, представьте, что Джон переходит через мост за 1 минуту, Пол – за 2 минуты, но Джорджу понадобится 24 часа, а Ринго – 24 часа и 1 минута. Теперь стало гораздо очевиднее, почему Джордж и Ринго должны вместе перейти через мост с фонарем, ведь для этого понадобится только один переход продолжительностью 24 часа.


К тексту

4. ДВОЙНОЕ СВИДАНИЕ

Два сына – одновременно и дяди, и племянники друг другу. Для простой головоломки ее условия на удивление запутанны. Назовем двух мужчин Альбертом и Бернардом, а их сыновей – Стивом и Тревором. Ниже изображено генеалогическое дерево.

Бернард и Стив – единокровные братья, поскольку у них одна мать. Следовательно, сын Бернарда Тревор – племянник Стива.

Аналогично Альберт и Тревор – единокровные братья, а значит, Стив – племянник Тревора.

Сложные семейные связи становятся еще запутаннее, если принять во внимание, что мать Бернарда замужем за Альбертом, – следовательно, мачеха матери Бернарда является матерью Альберта. Это делает мать Альберта неродной бабушкой Бернарда. Таким образом, Бернард состоит в браке со своей неродной бабушкой.



К тексту

5. ЗВАНЫЙ УЖИН

На званом ужине присутствует только один гость.

На представленной ниже схеме показаны родственные связи в этой странной семье. Отец губернатора – мистер C, а значит, этот гость – шурин отца губернатора. Таким же образом каждое из описаний гостей ведет нас от губернатора к гостю: через брата губернатора (мистера E), через его тестя (мистера B) и через шурина (мистера D).



К тексту

6. ЛГУНЬИ

Мы ищем такое сочетание правдивого и лживого утверждений, которое не ведет к противоречию.

Предположим, Берта говорит правду. Из этого следует, что Грета лжет, а значит, Роза должна говорить правду. Но если она говорит правду, то Берта и Грета лгут, что является противоречием. Следовательно, Берта не говорит правду.

Если Берта лжет, то Грета говорит правду, а это значит, что лжет Роза. Если же она лжет, то по меньшей мере одна из двух девушек (Берта или Грета) говорит правду, а это верное утверждение. Таким образом, сочетание утверждений, при которых Берта и Роза лгут, а Грета говорит правду, является логически непротиворечивым. Это и есть решение задачи.


К тексту

7. СМИТ, ДЖОНС И РОБИНСОН

В условии задачи сказано, что ближайший сосед кондуктора зарабатывает втрое больше него. Значит, ближайшим соседом кондуктора не может быть господин Джонс, поскольку его заработная плата не делится на три. Однако ближайшим соседом кондуктора не может быть и господин Робинсон, потому что кондуктор живет между Лидсом и Шеффилдом, а господин Робинсон – в Лидсе. Следовательно, ближайшим соседом и обитателем города «между Лидсом и Шеффилдом» должен быть господин Смит. Мы можем поставить галочку в правой верхней ячейке правой таблицы, как показано ниже, и сделать вывод, что господин Джонс живет в Шеффилде, так как это единственный оставшийся вариант.