Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — страница 25 из 45

Тезка кондуктора живет в Шеффилде, а нам известно, что мистер Джонс живет в Шеффилде. Стало быть, кондуктором должен быть Джонс. Как показано на рисунке ниже слева, мы можем отметить галочкой ячейку «Джонс – кондуктор», а также проставить крестики в других ячейках в той же строке и том же столбце, потому что у Джонса нет другой профессии, а остальные не являются кондукторами.



Подсказка о том, что Смит может выиграть у кочегара в бильярд, позволяет сделать вывод, что Смит не кочегар. (Кочегаром должен быть Робинсон.) Таким образом, мы ставим крестик в ячейке «Смит – Кочегар». Мы уже знаем, что Смит не кондуктор. Таким образом, методом исключения приходим к выводу, что Смит – машинист.


К тексту

8. ШКОЛА СВЯТОГО ДАНДЕРХЕДА

Определить, кто из девочек ходил в кино, можно, перебрав всех по одной, каждый раз исходя из того, что данная девочка была в кинотеатре, и подсчитывая, сколько девочек лгут.

Предположим, в кино ходила Джоан Джаггинс. Ее утверждение о том, что это была Джоан Твигг, не соответствует действительности, как и утверждение Герти Гасс. Однако Бесси и Салли, должно быть, говорят правду. Когда мы отметим это в таблице, нам легче будет выявить закономерность. В первой строке представленной ниже таблицы отображена правдивость или ложность утверждений в случае, если Джоан Джаггинс была в кино, во второй строке – если в кино была Герти Гасс и т. д. В последнем столбце отображено общее количество ложных утверждений. Таким образом, если П – правда, а Л – ложь, первая строка начинается с последовательности Л, Л, П, П, а вся таблица выглядит следующим образом:



Если по меньшей мере семь утверждений не соответствуют действительности, значит, тайным киноманом должна быть Дороти Смит.


К тексту

9. СЛУЧАЙ РОДСТВА

Итак, у нас есть пять мужчин: Дженкинс, Томкинс, Перкинс, Уоткинс и Симкинс, для простоты – Д, Т, П, У и С. И есть пять женщин, которые являются матерями и женами конкретных мужчин, причем одна и та же женщина не может быть одновременно женой и матерью одного мужчины – любовь в Кинсдейле, конечно, странная, но не настолько. Давайте определим этих женщин по их родственным связям и обозначим эти связи строчными буквами: д – мать Д, т – мать Т и т. д.

Далее нарисуем таблицу, верхняя строка которой соответствует мужчинам, а нижняя – их женам, то есть сначала вторая строка пуста. Если Томкинс – пасынок Дженкинса, значит, миссис Дженкинс – мать Томкинса, поэтому можно вписать букву т под Д.



Нам также известно, что Томкинс – отчим Перкинса, а это значит, что миссис Томкинс – мать Перкинса. Следовательно, под Т пишем п.



По условиям задачи, мать Перкинса – подруга миссис Уоткинс. Следовательно, мы знаем, что миссис Уоткинс не мать Дженкинса. Поскольку миссис Уоткинс не может быть матерью Уоткинса, методом исключения мы приходим к выводу, что она должна быть матерью Симкинса.



И наконец, сказано, что мать мужа миссис Уоткинс (то есть мать Уоткинса) – кузина миссис Перкинс. Следовательно, жена Перкинса не мать Уоткинса. Если жена Перкинса не мать Уоткинса, то она может быть только матерью Дженкинса. И снова методом исключения приходим к выводу, что жена Симкинса должна быть матерью Уоткинса.



Таким образом, получается, что пасынок Симкинса – Уоткинс.


К тексту

10. ЗАДАЧА О ЗЕБРЕ

Это табличная головоломка, поэтому рисуем таблицу. По условиям задачи, у нас есть пять домов и пять свойств, так что таблица должна выглядеть так, как показано ниже. Мы будем заполнять пустые ячейки, анализируя одно утверждение за другим.

Утверждение 9 гласит, что в среднем доме пьют молоко, поэтому мы можем записать слово молоко в третьем столбце. В утверждении 10 сказано, что датчанин живет в первом доме, значит, мы можем записать слово датчанин в первом столбце. Согласно утверждению 15, дом по соседству с домом датчанина синий, так что записываем слово синий во втором столбце.



В утверждении 6 говорится, что зеленый дом и дом цвета слоновой кости находятся по соседству. Следовательно, первый дом не может быть зеленым или цвета слоновой кости. Однако первый дом не может также быть красным, поскольку, по утверждению 2, шотландец живет в красном доме, а нам известно, что в первом доме живет датчанин. Мы можем сделать вывод, что первый дом желтый. Как сказано в утверждении 8, его хозяин носит криперы, а из утверждения 12 нам известно, что во втором доме держат лошадь.



Что пьет датчанин? Не кофе, если верить утверждению 4, и не чай, согласно утверждению 5, и не молоко, по утверждению 9, и не апельсиновый сок – исходя из утверждения 13. Следовательно, датчанин должен пить воду.

А кто живет во втором доме? Не шотландец, потому что его дом синий, и не грек, так как он держит лошадь. Значит, либо боливиец, либо японец. Однако если это японец, то что он пьет? Не воду, не молоко, не кофе (в силу утверждения 4) и не чай (в силу утверждения 5). Таким образом, японец должен пить апельсиновый сок. Но тогда, согласно утверждению 13, японец носит шлепанцы, что противоречит утверждению 14, которое гласит, что он носит вьетнамки. Следовательно, боливиец должен жить во втором доме, где он пьет чай.



По утверждению 6, зеленый дом и дом цвета слоновой кости находятся по соседству, а это значит, что красным может быть либо третий, либо пятый дом. Представим, что он пятый. В таком случае там живет шотландец, который, судя по утверждению 4, пьет апельсиновый сок и носит шлепанцы, как гласит утверждение 13. Но кто тогда носит броги и держит улиток, как говорится в утверждении 7? Не датчанин, который носит криперы, и не боливиец, который держит лошадь, и не грек, у которого, исходя из утверждения 3, есть собака, и не японец, который, по утверждению 14, носит вьетнамки. Получается, никто! Следовательно, мы можем сделать вывод, что третий дом – это красный дом шотландца, а значит, четвертый и пятый дома в силу утверждения 6 – это дом цвета слоновой кости и зеленый дом. Как сказано в утверждении 4, кофе пьют в пятом доме а значит, апельсиновый сок должны пить в четвертом. И, по утверждению 13, в четвертом доме носят шлепанцы.



Японец должен жить в пятом доме и носить вьетнамки, поскольку, в силу утверждения 14, он не может жить в четвертом доме, где должен жить грек со своей собакой.



Оставшаяся часть таблицы теперь заполняется автоматически: человеком, который носит броги и держит улиток, должен быть шотландец. Следовательно, боливиец носит сандалии, а, по утверждению 11, датчанин должен держать лису. В последнюю незаполненную ячейку мы вписываем зебру, ее держит японец.



Существуют и другие способы заполнить эту таблицу, но окончательный вариант всегда должен выглядеть именно так!


К тексту

11. ЗАВЕЩАНИЕ КАЛИБАНА

С чего же начать? Давайте еще раз сформулируем три утверждения.


1. Видевшие Калибана в зеленом галстуке не могут выбирать раньше Лоу.

2. Если Y.Y. не был в Оксфорде в 1920 году, то выбирающий первым никогда не одалживал Калибану зонтик.

3. Если вторым выбирает Y.Y. или Критик, то Критик выбирает раньше того, кто влюбился первым.


Попытаемся определить порядок, в котором Лоу, Y.Y. и Критик должны выбирать книги Калибана. Здесь важно то, что каждое утверждение необходимо для решения задачи, то есть оно должно содержать полезную информацию. Если хотя бы одно из утверждений не дает никаких сведений для поиска решения, значит, это решение неправильное.

Для того чтобы утверждение 1 предоставляло нам соответствующую информацию, по меньшей мере один из двух друзей Калибана – Y.Y. или Критик – должен был видеть его в зеленом галстуке. Если никто из них не видел Калибана в зеленом галстуке, утверждение избыточно. Из этого следует, что Лоу не может выбирать третьим, поскольку после него должен следовать тот, кто видел Калибана в зеленом галстуке.

Теперь проанализируем утверждение 2. Если Y.Y. не был в Оксфорде в 1920 году, то утверждение 2 не дает никаких данных насчет порядка выбора, а значит, мы можем считать, что Y.Y. не был в Оксфорде. А если никто не одалживал Калибану зонтик, утверждение избыточно. Следовательно, кто-то одолжил ему зонтик.

Но кто? Если зонтик Калибану одолжил Лоу, то в силу утверждения 2 Лоу не может быть первым. Из утверждения 1 нам известно, что Лоу не последний, а это делает его вторым. Но если Лоу второй, то утверждение 3 избыточно, поскольку, для того чтобы утверждение 3 давало ценные сведения, вторым должен быть либо Y.Y., либо Критик. Таким образом, Лоу не одалживал Калибану зонтик.

Если и Y.Y., и Критик одолжили Калибану зонтик, то, по утверждению 2, Лоу должен выбирать первым, а, по утверждению 3, Критик должен быть вторым и Y.Y. третьим; другими словами, утверждение 1 избыточно. Следовательно, либо Y.Y., либо Критик одолжили Калибану зонтик, но не оба. Аналогичным образом, если и Y.Y., и Критик видели Калибана в зеленом галстуке, то в силу утверждения 1 Лоу должен выбирать первым, а утверждение 2 избыточно. Стало быть, либо Y.Y., либо Критик видели Калибана в зеленом галстуке, но не оба.

Предположим, Y.Y. видел Калибана в зеленом галстуке и одолжил ему зонтик. Из утверждения 1 мы знаем, что Y.Y. не может выбирать первым, и если это верно, утверждение 2 избыточно. Следовательно, если Y.Y. видел Калибана в зеленом галстуке, то он не мог одолжить ему зонтик, а значит, зонтик одолжил Калибану Критик. Аналогично, если Критик видел Калибана в зеленом галстуке, применима та же логика, и тогда Y.Y. должен был одолжить Калибану зонтик.

В обоих случаях Лоу должен выбирать первым. И если это так, согласно утверждению 3, Y.Y. должен быть тем, кто влюбился первым. В итоге окончательный порядок выбора книг следующий: Лоу, Критик, Y.Y.