Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — страница 39 из 45

К тексту


9. в) 320.

Для того чтобы пронумеровать страницы с 1-й по 9-ю, нам понадобится 9 цифр; для нумерации страниц с 10-й по 99-ю необходимо 180 цифр. Таким образом, для нумерации страниц до начала трехзначных чисел (со страницы 100) потребуется 189 цифр. Остается 663 цифры, на которые приходится еще 221 страница. Следовательно, в книге 9 + 90 + 221 = 320 страниц.

К тексту


10. б) 18.

Представьте, что этот крест состоит из трех горизонтальных уровней. На первом расположен куб, который был приклеен к верхней грани исходного куба. На втором находится исходный куб и четыре дополнительных куба, приклеенных к его боковым граням. Третий уровень содержит только куб, приклеенный к нижней грани исходного куба. При добавлении желтых кубов один куб приклеивается к верхней грани голубого куба на первом уровне и четыре куба – к его боковым граням. Восемь желтых кубов будут приклеены к голубым кубам на втором уровне. А к единственному голубому кубу на третьем уровне будут приклеены пять желтых кубов, как и в кубе на первом уровне. Следовательно, всего потребуется 18 желтых кубов.

К тексту

Глава 5. Игры с числами. Задачи для сторонников чистоты жанра
101. ЗЕРКАЛО, ЗЕРКАЛО

Эти суммы одинаковые! Такой вывод кажется довольно неожиданным, пока вы не проанализируете вычисления по столбцам. Может, даже целесообразно произнести это вслух. Первый столбец суммы слева содержит одну девятку, или 1 × 9; первый столбец суммы справа содержит девять единиц, или 9 × 1. Второй столбец суммы слева содержит две восьмерки, или 2 × 8; второй столбец суммы справа содержит восемь двоек, или 8 × 2. И так далее. Цифры в каждом столбце дают в сумме одно и то же число, а значит, общие суммы одинаковы.


К тексту

102. ИНТЕЛЛЕКТ КАК У ГАУССА

Если бы нам требовалось записать все эти числа в столбик, как при сложении, то надо было бы знать, что при использовании подхода Гаусса каждый столбец, соответствующий разряду единиц, десятков, сотен и тысяч, содержит одни и те же цифры – единицы, двойки, тройки и четверки, хотя порядок цифр в каждом столбце будет разным. Подсчитать сумму цифр в каждом столбце не составит труда: (6 × 1) + (6 × 2) + (6 × 3) + (6 × 4) = 6 + 12 + 18 + 24 = 60. Следовательно, общая сумма равна:



К тексту

103. СУММА ЧИСЕЛ В ТАБЛИЦЕ

Возможно, вы решили эту задачу одним из двух способов. Я буду называть первый способ методом Алкуина, поскольку он похож на тот, каким ученый образовал пары чисел при вычислении суммы чисел от 1 до 100, а второй способ – методом Гаусса.



Метод Алкуина. Сложите числа попарно по диагонали, от верхней левой до нижней правой ячейки таблицы. При этом получите: (1 + 19) = 20, (2 + 18) = 20, (3 + 17) = 20 и так далее до пары (9 + 11) = 20. Всего существует одна пара первого типа, две пары второго типа, три пары третьего типа и т. д. Следовательно, сумма этих пар равна 20 + (2 × 20) + (3 × 20) + … + (9 × 20), или (1 + 2 + 3 + … + 9) × 20, что равно 45 × 20 = 900. К этому числу следует прибавить десять десяток, расположенных по диагонали, которые мы еще не включили. Таким образом, общая сумма составит 900 + 100 = 1000.


Метод Гаусса. Сумма чисел первой строки равна (1 + 10) + (2 + 9) + … + (5 + 6) = 5 × 11 = 55. Каждое число во второй строке на единицу больше соответствующего числа в первой строке, стало быть, сумма чисел второй строки равна сумме чисел первой строки плюс 10. Сумма чисел третьей строки равна сумме чисел второй строки плюс 10, то есть сумме чисел первой строки плюс 20. Следовательно, сумма чисел во всей таблице равна

55 + (55 + 10) + (55 + 20) + … + (55 + 90).

Что дает:

(10 ×55) + (10 + 20 + 30 + … + 90)

или

550 + 10(1 + 2 + 3 + … + 9) = 550 + (10 × 45) = 550 + 450 = 1000.


К тексту

104. ЦИФРЫ В КВАДРАТАХ

9 – 5 = 4

×

6 ÷ 3 = 2

=

1 + 7 = 8.


К тексту

105. УРАВНЕНИЯ-ПРИЗРАКИ

27 × 3 = 81.

6 × 9 = 54.


К тексту

106. ЧИСЛА В КРУГАХ

Сумма чисел в каждом круге равна 11.



Сумма чисел в каждом круге равна 13.



Сумма чисел в каждом круге равна 14.



К тексту

107. ЧЕТЫРЕ ЧЕТВЕРКИ

Существует много вариантов приведенных ниже решений.

От 2 до 9:



От 10 до 20:



От 21 до 30:



От 31 до 40:



От 41 до 50:



(Выражаю благодарность сайту mathforum.org, где я позаимствовал эти решения.)


К тексту

108. ЗАДАЧА КОЛУМБА[42]

Дроби прекрасно сокращаются, поскольку


К тексту

109. ТРОЙКИ И ВОСЬМЕРКИ

К тексту

110. ДЕТСКАЯ ИГРА

Если в условиях задачи сказано, что дети способны решить ее быстрее взрослых, то это говорит о том, что для ее решения не требуется знания математики, нужно лишь распознать простые визуальные закономерности. Увидев список чисел, взрослые автоматически начинают размышлять в категориях чисел. Однако в данной головоломке числа – всего лишь фигуры, не имеющие никакого математического смысла. Подсчитайте количество петель в каждом из четырехзначных чисел: полученное количество и есть число справа от знака равенства. У символа 8 две петли, у 0 одна, у 9 одна, а значит, число 8809 содержит шесть петель. Следовательно, число 2581 имеет 2 петли.


К тексту

111. ЗАДАЧА 1: СЛЕДУЙТЕ ЗА СТРЕЛКОЙ

Надеюсь, вы не слишком долго думали. Здесь действует простая закономерность. Каждое очередное число можно получить, умножив две цифры предыдущего числа:


7 × 7 = 49; 4 × 9 = 36; 3 × 6 = 18.


Таким образом, следующее число – 1 × 8 = 8.


К тексту

112. ЗАДАЧА 2: СЛЕДУЙТЕ ЗА СТРЕЛКОЙ

Здесь закономерность состоит в следующем: нужно возвести каждую цифру числа в квадрат и сложить результаты:


42 = 15; 12 + 62 = 37; 32 + 72 = 58.


И так далее, пока не будет обнаружено, что отсутствующее число – 20, поскольку 42 + 22 = 20 и 22 + 02 = 4.

Я довольно долго изучал фрагмент 4 → 16, прежде чем понял, что здесь требуется возведение в квадрат. На следующем этапе необходимо было понять, как возведение в квадрат может привести от 16 к 37. А затем все пошло своим чередом.


К тексту

113. ЗАДАЧА 3: СЛЕДУЙТЕ ЗА СТРЕЛКОЙ

Эта головоломка покажется по-настоящему сложной, если вы еще не встречались с подобными задачами. Кажется, что здесь нет никакой арифметической закономерности. Однако если произносить слова, обозначающие эти числа, то можно заметить, что слова становятся все длиннее:


Ten (10)

Nine (9)

Sixty (60)

Ninety (90)

Seventy (70)

Sixty-six (66)


Если записать эти слова, закономерность становится очевидной. В первом числе списка три буквы, во втором четыре, в третьем пять, а в остальных шесть, семь и восемь соответственно. Числа приведены в порядке возрастания длины слова, которым обозначается число, причем у каждого нового члена последовательности на одну букву больше.

Таким образом, следующий член последовательности должен состоять из девяти букв. Однако многие слова, обозначающие числа, состоят из девяти букв, например: forty-four (44), fifty-five (55), sixty-nine (66), ninety-six (96).

Вернемся к списку и проанализируем его еще раз. Числа со словами из трех букв – one (1), two (2), six (6) и ten (10). Числа со словами из четырех букв – four (4), five (5) и nine (9).

Каждое число в данной последовательности – это самое большое число с соответствующим количеством букв. Мы можем убедиться в этом, проверив другие числа в списке. Самое большое число с девятью буквами – ninety-six (96), а значит, это и есть ответ.

Ну, не совсем. Число

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, или – это googol (гугол), а в этом слове шесть букв. Если прибавить к этому числу еще один ноль, получится число ten googol (десять гуголов), а здесь девять букв. Вот это лучший ответ!

Понимаете, почему эту задачу, как утверждают некоторые, часто просят решить в Google потенциальных кандидатов?


К тексту

114. СЛОВАРНЫЙ УГОЛОК

В словаре один квадриллион чисел. Все числа должны начинаться с одного из слов one (1), two (2), three (3), four (4), five (5), six (6), seven (7), eight (8), nine (9), ten (10), eleven (11), twelve (12), thirteen (13), fourteen (14), fifteen (15), sixteen (16), seventeen (17), eighteen (18), nineteen (19), twenty (20), thirty (30), fourty (40), fifty (50), sixty (60), seventy (70), eighty (80) или ninety (90). Следовательно, номер первой словарной статьи должен начинаться с цифры 8.