Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — страница 6 из 45

[11], в которой есть следующая задача о трех лицах, испачканных сажей.

17. ЛИЦО В САЖЕ

Три пассажира поезда спокойно занимаются своими делами, как вдруг влетевший в окно дым от проходящего мимо локомотива покрывает их лица копотью. Один из пассажиров, мисс Аткинсон, отрывает глаза от книги, которую читает, и смеется. Другие пассажиры тоже смеются. Мисс Аткинсон, как и ее соседи по купе, считает, что у нее-то лицо чистое, а два других пассажира смеются потому, что видят испачканные сажей лица друг друга. Однако вскоре мисс Аткинсон озаряет, она достает носовой платок и вытирает лицо.

Мы можем исходить из того, что все трое ведут себя логично, но мисс Аткинсон более проницательна. Как она поняла, что ее лицо тоже испачкано сажей?

Книга «Занимательные задачи» Гамова не так популярна, как его другие книги, тем не менее в ней приводится одна из самых великолепных из когда-либо созданных логических задач. (Гамов говорил, что о ней ему рассказал великий советский астрофизик Виктор Амбарцумян.) Я немного перефразировал ее, заменив жен на мужей. Это трудная головоломка, но если вы следили за логикой двух предыдущих задач, то у вас есть все необходимое для ее решения. Даже если не справитесь самостоятельно, вы сможете проанализировать готовое решение и, не сомневаюсь, будете им восхищены.


Ответ

18. 40 НЕВЕРНЫХ МУЖЕЙ

В провинциальном городке 40 мужей изменяют своим женам. Каждая женщина знает, что у всех мужчин (кроме ее мужа) роман на стороне. Другими словами, каждая жена думает, что ее муж хранит ей верность, зная при этом, что остальные 39 мужчин изменяют женам.

Узнав о моральной деградации жителей города, столичный правитель издал указ, требующий наказать мужей за безнравственность. В указе сказано, что на следующий день после того, как женщина узнает о неверности мужа, она должна убить его в полночь на городской площади.

Что происходило после того, как правитель заявил: «Я знаю, что в вашем городе есть хотя бы один неверный муж, поэтому призываю вас принять меры»?


Сначала головоломка кажется неправдоподобной, ведь жены-то уже знают о 39 неверных мужьях. Разве слова правителя о том, что «хотя бы» один муж изменяет своей жене, что-то меняют? Вне всякого сомнения, многое!


В следующей головоломке задействованы три человека, которые делают дедуктивные выводы на основании того, что знают сами и что известно другим.


Ответ

19. КОРОБКА СО ШЛЯПАМИ

У Альгернона, Бальтазара и Каратака есть коробка с тремя красными и двумя зелеными шляпами. Каждый мужчина достает с закрытыми глазами шляпу из коробки и надевает ее. Закрыв коробку, они открывают глаза, и каждый из них видит, какого цвета шляпа на голове у товарищей. Но ни один не знает цвета своей шляпы и того, какие шляпы остались в коробке.

Альгернон: Я не знаю цвета своей шляпы.

Бальтазар: Я не знаю цвета своей шляпы.

Увидев у двух друзей на голове красные шляпы, Каратак говорит: «А я знаю цвет своей шляпы».

Какого цвета его шляпа?

Задача «Коробка со шляпами» появилась не позднее 1940 года, хотя в то время она звучала по-другому: речь в ней шла о навершиях на головных уборах у китайских мандаринов. И самое важное – по условиям задачи ни один мандарин не заявлял о своем неведении вслух. Нужно было вывести дедуктивным методом, чего не знают мандарины, судя по их молчанию.

Комедийный диалог, в ходе которого каждый персонаж задачи заявляет, что он чего-то не знает, – забавное усовершенствование, добавленное в 1960-х годах. Этот остроумный прием яснее показывает, кто что знает, и усиливает эффект пантомимы.

Представленная ниже головоломка взята из книги Джона Литлвуда Mathematician’s Miscellany[12], опубликованной в 1953 году. Литлвуд был одним из трех известных британских математиков первой половины XX столетия, к числу которых относились Харди, Литлвуд и, как гласила шутка, «Харди-Литлвуд» (что подчеркивает невероятно длительное плодотворное сотрудничество между Джоном Литлвудом и Готфридом Харди). Во время Первой мировой войны Литлвуд работал на армию, улучшая формулы расчета направления, продолжительности полета и траектории движения снарядов. Военный труд Литлвуда оценили очень высоко, наделив ученого особой привилегией – разрешением носить зонт, будучи одетым в военную форму.

Но вернемся к головоломке, основанной на оригинальной задаче Литлвуда. Теперь она включает ставший нормой диалог между персонажами, что усложняет дело, так как вам придется запоминать различные варианты по мере накопления общих знаний. Пошаговое исключение неправильных ответов в ходе решения задачи приносит настоящее удовольствие. Разгадка головоломок позволяет испытать такую ясность мысли, которая одновременно и возбуждает, и терзает, а это само по себе весело.


Ответ

20. ПОСЛЕДОВАТЕЛЬНЫЕ ЧИСЛА

Втайне написав два числа на листе бумаги, Зебеди сказал Ксанфу и Иветт, что это целые числа, то есть они взяты из ряда чисел, начинающегося с 1, 2, 3, 4, 5… Он также сообщил, что это последовательные числа, иными словами, два числа, следующие друг за другом (такие числа образуют пары: 1 и 2, или 2 и 3, или 3 и 4 и т. д.). Затем Зебеди шепотом назвал одно число Ксанфу, а другое – Иветт, после чего произошел такой диалог:


Ксанф: Мне неизвестно твое число.

Иветт: Мне неизвестно твое число.

Ксанф: Теперь я знаю твое число.

Иветт: Теперь и я знаю твое число.


Можете ли вы определить хотя бы одно из чисел Зебеди?

Зебеди мог бы не шептать число на ухо Ксанфу, а нарисовать его на лице Иветт сажей или написать на ее шляпе. Или сделать то же самое, поменяв приятелей местами. Важно, что Ксанфу известно то, чего не знает Иветт, и наоборот.

Тот же принцип лежит в основе следующей задачи, которую я разместил в 2015 году в своем блоге в Guardian после того, как нашел ее на одном сингапурском сайте. Головоломка привлекла мое внимание, потому что, согласно описанию, предназначалась для учеников начальной школы, а этот факт подкреплял стереотипное представление о поразительно высоких стандартах математического образования в странах Азии. Если в Сингапуре от учеников начальной школы ожидали решения подобных задач, то неудивительно, что их считают лучшими юными математиками в мире.


Ответ

21. ДЕНЬ РОЖДЕНИЯ ШЕРИЛ

Альберт и Бернард только что познакомились с Шерил и хотят знать, когда у девочки день рождения. Шерил дала им список из десяти возможных дат.


15 мая 16 мая 19 мая

17 июня 18 июня

14 июля 16 июля

14 августа 15 августа 17 августа


После этого она назвала Альберту месяц, а Бернарду число своего дня рождения. Далее между Альбертом и Бернардом произошел такой диалог.

Альберт: Я не знаю, когда у Шерил день рождения, но знаю, что Бернард тоже не знает.

Бернард: Сначала я не знал, когда у Шерил день рождения, но теперь знаю.

Альберт: Теперь я тоже знаю, когда у Шерил день рождения.


Так когда день рождения у Шерил?

За несколько часов размещенная в моем блоге задача «День рождения Шерил» стала самой просматриваемой публикацией на сайте Guardian. По всей вероятности, этому способствовал дерзкий заголовок-приманка «Умнее ли вы десятилетнего ребенка?».

Однако вскоре выяснилось, что задача взята из заданий региональной олимпиады по математике, рассчитанной на 40 процентов сильнейших учеников в возрасте 15 лет, причем она была предпоследним из двадцати пяти заданий, представленных в порядке возрастания сложности. Следовательно, решить ее могли только самые сильные ученики. Я изменил заголовок с тем, чтобы он правильно отражал уровень сложности головоломки, но интерес к ней все равно не ослабел. Напротив, задача о дне рождения Шерил распространялась по сети словно пандемия, став в последующие дни историей номер один на многих новостных сайтах, в том числе BBC и New York Times. За неделю она собрала более пяти миллионов просмотров на одном только сайте Guardian. Когда в газете определили самые просматриваемые публикации года, упомянутый пост в моем блоге, где я представил задачу, занял девятое место, а пост с решением – шестое. Сомневаюсь, что когда-либо математическая задача так быстро распространялась среди стольких людей по всему миру.

Я связался с сингапурским преподавателем математики по имени Джозеф Йоу Бун Вуй, который составил эту задачу. Просматривая ленту в Facebook, он увидел фотографию экзаменационного билета с этой задачей и понял, что она стремительно распространяется по миру. «Я уже где-то видел эту задачу! – воскликнул он. – Постойте, ведь это же я ее составил!»

Доктор Йоу из Национального института образования – ведущий автор учебников по математике, по которым учится более половины учеников средней школы в Сингапуре. Он сказал мне, что идея головоломки пришла к нему от кого-то другого. Доктор Йоу прочитал ее похожий вариант в сети и решил его адаптировать, дав персонажам новые имена, сократив диалог и изменив даты, ради шутки сделав ответом собственный день рождения. Ни мне, ни ему не удалось найти первого автора задачи. Мы смогли отследить ее истоки только до публикации 2006 года на страницах математического форума Ask Dr. Math, который поддерживает Университет Дрексела. Задачу вместе с просьбой помочь ее решить разместил на сайте некто по имени Эдди.

Из всего этого вытекает следующий вывод: создание интересной головоломки, как правило, коллективное творчество. Как басни и анекдоты, головоломки меняются и развиваются. С каждой новой формулировкой в них привносится что-то новое, причем лучшие варианты могут существовать в течение десятилетий, столетий и даже тысячелетий.