Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления — страница 8 из 45

Шаг 2. Сделайте то же самое, установив ножку циркуля с иглой в другой конечной точке отрезка.

Шаг 3. С помощью линейки проведите прямую линию между точками пересечения окружностей.



Каждая теорема в «Началах» представлена в виде задачи, а каждое доказательство – в виде решения. По существу, это книга головоломок – во всем, кроме названия. В следующей головоломке мне нравится то, что она словно дразнит Евклида, мастера концептуальной бережливости, за то, что в его пенале слишком много инструментов.

26. ТОЛЬКО ЛИНЕЙКА

У вас есть только карандаш и линейка. Как показано на рисунке, на линейке всего две метки. Можете ли вы провести отрезок, длина которого равна половине расстояния между ними? Другими словами, если расстояние между двумя метками составляет 2 единицы, проведете ли вы отрезок длиной в 1 единицу?

Измерения разрешается выполнять только с помощью линейки, не используя карандаш и бумагу.


Все задачи в этой главе геометрические в том смысле, что они позволяют изучить свойства линий, фигур и объектов и получить при этом удовольствие. Следующая задача взята из издания «Начал» XVIII века с примечаниями британского ученого Уильяма Уистона, преемника Ньютона на должности лукасовского профессора математики[17] в Кембриджском университете. Уистон обратил внимание на одну математическую странность, положенную в основу известной головоломки.

Ученый вычислил, насколько большее расстояние проходит голова человека, огибающего земной шар по окружности, по сравнению с расстоянием, пройденным ногами. Можете ли вы подсчитать это дополнительное расстояние исходя из предположения, что земной шар имеет сферическую форму?

Я выполню для вас эти расчеты, но нам понадобятся некоторые элементарные математические знания, а именно формула длины окружности, равная произведению радиуса и двух π, которую обычно записывают как 2π, где π примерно равно 3,14. Надеюсь, ее введение не уведет вас в сторону от удивительного, неожиданного результата. Потерпите немного, пока я буду делать вычисления.



На рисунке r – это радиус Земли, а H – рост человека. По формуле длина окружности земного шара (расстояние, пройденное ногами человека) равна 2πr, а длина окружности, обозначенной пунктиром (расстояние, пройденное головой), составляет 2πr(r + H), поскольку радиус пунктирной окружности равен радиусу Земли плюс рост человека. Таким образом, разность между длинами двух окружностей, которая показывает, насколько большее расстояние проходит голова человека, составляет:


2πr(r + H) – 2πr = 2πr + 2πH – 2πr = 2πH.


Члены уравнения 2πr сокращаются (запомните это!), а значит, ответ – 2πH, то есть 2 × 3,14 × рост человека.

Следовательно, если рост человека равен, скажем, 1,8 метра, то его голова проходит примерно на 11 метров больше, чем ноги.

Теперь понятно, почему Уистон посчитал этот ответ достаточно интересным и достойным внимания. Это действительно крохотное расстояние, если учесть, что окружность Земли – около 40 тысяч километров. Просто невероятно, что после путешествия вокруг Земли в тысячи километров голова человека проходит всего на 11 метров больше, чем его ноги, или 0,00003 процента от пройденного пути!

Путешественник Уистона стал источником вдохновения для следующей классической головоломки.


Ответ

27. ВЕРЕВКА, НАТЯНУТАЯ ВОКРУГ ЗЕМЛИ

Допустим, вокруг земного шара туго натянута веревка. Затем ее удлинили на 1 метр и поднимали над землей до тех пор, пока она не образовала окружность, в которой каждая ее точка оказалась на одинаковой высоте от земли.

На какой высоте теперь расположена веревка? Какого размера животное может под ней пройти?

На рисунке ниже показано, что это, по сути, такая же задача, как и предыдущая. Обе подразумевают сравнение двух окружностей, меньшая из которых – окружность земного шара. В случае с веревкой длина большей окружности превышает длину меньшей окружности на 1 метр.



В задаче с веревкой парадоксальность ответа впечатляет еще больше. Увеличив длину веревки на 1 метр, мы сможем поднять ее над землей на метра, то есть около 16 сантиметров. (Вот как я получил этот результат: пусть с – длина окружности земного шара, тогда длина большей веревки составит с + 1. Применив формулу длины окружности, получим два уравнения: 2πr = c и 2π(r + h) = c + 1. Эти уравнения дают 2πh = 1 или .)

Поразмышляйте немного над результатом. У нас есть веревка длиной 40 тысяч километров, удлиненная до 40 001 километра. Но этого на первый взгляд несущественного увеличения достаточно, чтобы поднять ее над землей на 16 сантиметров по всей окружности земного шара. Какое животное сможет свободно пролезть под этой веревкой? Кошка или маленькая собака.

Теперь вернемся к задаче о человеке, обогнувшем Землю. При вычислении дополнительного расстояния, которое проходит его голова, мы сократили два члена уравнения 2πr и получили 2π, умноженное на рост человека. Важно, что радиус земного шара r отсутствует в ответе, а значит, дополнительное расстояние, преодолеваемое головой, определяется исключительно ростом человека и не зависит от радиуса Земли. Другими словами, размер планеты никак не влияет на ответ. Путешественник Уистона мог бы обойти любой шар, и в каждом случае его голова прошла бы дополнительно 11 метров.


1. Человек обходит атом. Насколько большее расстояние пройдет его голова по сравнению с расстоянием, пройденным ногами?

2. Человек обходит футбольный мяч. Насколько большее расстояние пройдет его голова по сравнению с расстоянием, пройденным ногами?

3. Человек обходит Юпитер, длина окружности которого – около 400 тысяч километров. Насколько большее расстояние преодолеет его голова по сравнению с ногами?

4. Человек обходит Солнце, длина окружности которого равна около 4,4 миллиона километров. Насколько большее расстояние пройдет его голова по сравнению с ногами?


Во всех этих случаях ответ – всего 11 метров (разумеется, без учета сопутствующих физических препятствий). Аналогично, если бы веревка опоясывала атом, мяч, Юпитер или Солнце, увеличения ее длины на 1 метр было бы достаточно для ее поднятия на 16 сантиметров. Просто поразительно!

Уильям Уистон пробыл на должности лукасовского профессора всего восемь лет до того, как был изгнан из Кембриджского университета за еретические воззрения (он отвергал идею Святой Троицы, утверждая, что Иисус не равен Богу). Уистон так и не вернулся в мир университетской науки; он читал лекции по математике и естественным наукам в лондонских кафе, в ходе которых часто отвлекался на религиозную полемику.

Самый крупный вклад Уистона в науку связан с той ролью, которую он сыграл в последующем принятии закона о долготе. Он убеждал британское правительство объявить о денежном вознаграждении тому, кто найдет способ определять координату долготы судна в море, и создать для этих целей специальную комиссию. Уинстон надеялся выиграть эти деньги, но все его попытки решить поставленную задачу потерпели неудачу. Поэтому вполне уместным кажется то, что самым крупным вкладом этого ученого в математическую науку стала головоломка о путешествии вокруг Земли.


Я отдаю предпочтение задаче Уистона, в которой человек обходит земной шар, чем ее более поздней версии, где веревка парит над землей, поскольку, несмотря на очевидную абсурдность обеих ситуаций, первый сценарий кажется менее надуманным. Если бы такая веревка действительно существовала и вы бы удлинили ее на 1 метр, то, прежде чем думать о том, как поднять ее в воздух по всей длине, вы потянули бы веревку вверх в одной точке, чтобы посмотреть, на какую высоту она поднимется. Особенно если бы цель состояла в том, чтобы провести под веревкой какое-нибудь животное!

Новая задача

5. Допустим, у вас есть веревка, натянутая вокруг земного шара, и вы удлинили ее на 1 метр. Поднимайте веревку вверх в одной точке до тех пор, пока она не натянется. На какую высоту она поднялась? Какое животное сможет под ней пройти?

Не пытайтесь решить задачу, поскольку это по силам только людям с определенным уровнем математической подготовки. Я привел ее исключительно из-за оригинального решения. Попробуйте догадаться, как это делается, а затем сверьтесь с ответами в конце книги. Но сначала все же решите следующую задачу.

Подсказка: вам понадобится знание теоремы Пифагора, которая гласит, что во всех прямоугольных треугольниках квадрат гипотенузы равен сумме квадратов двух катетов. (Гипотенуза – это сторона, расположенная напротив прямого угла.) Но вы ведь это знаете, не так ли?



Ответ

28. ГИРЛЯНДА ИЗ ФЛАЖКОВ ДЛЯ УЛИЧНОГО ПРАЗДНИКА

На вашей улице длиной (от начала до конца) 100 метров будет проходить праздник. У вас есть 101-метровая гирлянда из флажков. Один ее конец вы прикрепляете к основанию фонарного столба в начале улицы, а другой – на расстоянии 100 метров у основания фонарного столба в конце улицы; середину гирлянды крепите к верхушке шеста, расположенного на полпути вниз по улице.

Какова высота шеста, если исходить из того, что гирлянда не провисает и не растягивается?

Следующие три головоломки касаются поведения катящихся кругов. Если вы никогда не размышляли над такими идеями, то ваша голова может пойти кругом. Однако я гарантирую, что ответы приведут вас в полный восторг. Вероятно, эти головоломки станут понятнее, если побывать в Японии.


«Начала» сделали Евклида выдающимся логиком, корифеем строгого дедуктивного мышления. Сегодня это звание разделяет, а может, даже затмев