Истинно время придет, когда в тех дальних пределах
Согнутым плугом своим борозду прорезающий пахарь
Дротики в почве найдет, изъязвленные ржею шершавой;
Тяжкой мотыгой своей наткнется на шлемы пустые
И богатырским костям подивится в могиле разрытой.
Текст эпиграфа, скорее всего, возражений не вызывает, удивительно имя его автора. Согласитесь, что это несколько неожиданно – узнать о столь уважительном отношении римского поэта, жившего в I в. до н. э., к предметам древнейшей культуры, когда, по нашим понятиям, археологии еще не существовало. Интерес к ушедшим эпохам у человечества, вероятно, был всегда. По существу, предметы быта ушедших эпох, произведения декоративно-прикладного искусства, а также сохранившиеся рисунки и тексты не только интересны сами по себе, они формируют тот фундамент, на котором стоят историческая наука, культурология и искусствоведение. Тем не менее уважительного отношения и интереса к таким предметам недостаточно, необходимо уметь их реставрировать и сохранять.
Поскольку беспощадное время старается лишить нас таких произведений искусства, отдадим дань уважения этому противнику.
Все не так просто
Некоторые люди, далекие от археологии, иногда наивно полагают, что вполне достаточно найденный в земле предмет отмыть каким-либо моющим средством от грязи, почистить мягкой щеткой и высушить. Такой способ пригоден, скорее всего, только для того, чтобы освежить потускневшие фамильные украшения. Работа археолога всегда предполагает внимательное всестороннее изучение найденного предмета, в том числе и коррозионного слоя, который позволяет установить подлинность археологического объекта, ориентировочно определить состав использованного металлического сплава, а иногда определить возраст экспоната. После этого наступает этап реставрации, который из-за сложности разработанных методик и определенной ответственности при работе с уникальным экспонатом очень далек от бытовых представлений, предполагающих простое мытье.
Труд современного реставратора представляет собой научно-исследовательскую деятельность, которая требует от исполнителя навыков в работе и специальных знаний. Современная реставрация давно отошла от простого ремесла, сегодня – это междисциплинарная научная область; творческая работа проходит на стыке естественнонаучных и гуманитарных дисциплин. Познакомимся с тем, что именно попадает в руки реставраторов.
Металлы – фундамент цивилизации
Сосредоточим внимание на предметах бронзового и железного века. Бронзовый век сменил эпоху неолита, когда основные орудия изготавливали из твердых пород камня. Наступление бронзового века (середина III тыс. – начало I тыс. до н. э.) принципиально расширило возможности человека в освоении природы. Медь и ее сплавы становятся основным материалом для изготовления орудий труда и быта. Вначале это были мелкие предметы, затем сельскохозяйственные инструменты (серпы, плуги), оружие (наконечники копий и стрел, ножи, кинжалы), украшения (браслеты, бляхи и перстни), зеркала, посуда и монеты. Первоначально использовали самородную медь, затем перешли к медным сплавам. Обобщающим термином «бронза» обозначают сплавы меди с оловом, часто с примесью сопутствующих элементов – мышьяка, свинца, цинка, сурьмы, иногда никеля.
Сплавы получали не только из чистых металлов, но и путем сплавления металлов с рудами либо смешением различных руд. В результате медно-никелевые и медно-цинковые сплавы были получены за много столетий до того, как научились добывать чистые никель и цинк. Наши далекие предки, судя по всему, достаточно хорошо могли оценить свойства получающихся сплавов и вполне сознательно использовали те или иные их особенности для изготовления предметов, имеющих различное назначение.
Бронза, в отличие от чистой меди, более легкоплавка, что облегчало процесс выплавки, кроме того, она имеет высокие литейные качества (точно воспроизводит тонкие детали литейной формы) и обладает значительно большей прочностью.
Знаменательный этап в истории цивилизации – переход от медных сплавов к железным – был продиктован рядом обстоятельств. Сплавы железа имеют заметно большую конструкционную прочность в сравнении с медными. Кроме того, железо – один из самых распространенных элементов в земной коре (занимает четвертое место после кислорода, кремния и алюминия), в то время как медь находится в этом перечне на 26-м месте, иными словами, запасы железосодержащих минералов неизмеримо «мощнее», нежели медьсодержащих.
Вначале железо получали сыродутным способом. Для этого сооружали печь – купол из глины, позже стали делать деревянный сруб, закрытый изнутри огнеупорной глиной. В печь закладывали руду и уголь, сбоку находилось отверстие, в которое вставляли трубку, идущую от меха для подачи воздуха, через это же отверстие проводили выпуск плавки. По существу, это был прообраз доменной печи (рис. 8.25).
Само железо весьма мягкий материал, и древние мастера научились насыщать его углеродом для получения твердых сплавов, способных воспринимать закалку. Орудия труда и оружие изготовляли с помощью многократной горячей ковки, придававшей изделию необходимую форму. Позже нашли способы с помощью термической и химической обработки придавать изделиям из железных сплавов декоративный вид (оксидирование, называемое в быту воронением), что одновременно защищало поверхность от коррозии.
Почва – коварная среда
Рассмотрим кратко процессы, происходящие при коррозии металлических предметов. В результате атмосферной коррозии медные сплавы покрываются тонкой пленкой оксидов: красного оксида меди Cu2O и черного оксида CuO. Со временем пленка приобретает коричневый цвет, это так называемая естественная патина – темный прозрачный слой, придающий изделиям налет благородной старины, однако такое можно наблюдать при не очень длительном хранении предмета.
В отличие от атмосферной коррозии, при почвенной коррозии (именно с ней приходится иметь дело археологу) дело обстоит намного хуже. На предмете образуются коррозионные слои, наружный состоит из основных карбонатов меди (в зависимости от состава зеленого или синего цвета), покрытых остатками почвы и органических наслоений. Там же часто содержится основной хлорид меди СuCl(OH), а под ним – плотный красно-коричневый оксид меди Cu2O, содержащий включения черного оксида CuO. Еще глубже расположены чешуйки восстановленной меди, это результат электрохимической коррозии, протекающей в почве.
Между слоем восстановленной меди и оксидным слоем находится самая опасная коррозионная составляющая – хлорид меди CuCl2, чаще всего это соединение образуется при повышенной влажности от присутствия ионов хлора в засоленных почвах. Хлорид меди при взаимодействии с влагой гидролизуется, переходя в основной хлорид СuCl(OH). При этом образуется хлороводород HCl, который в присутствии кислорода и влаги начинает разрушать не затронутый коррозией слой металлической меди. На поверхности предмета появляются небольшие ярко-зеленые пятна рыхлого гигроскопичного вещества, постепенно очаги разрастаются, разрушение также идет вглубь металла, образуются каверны, поверхность становится изъязвленной. Этот процесс называют «бронзовой болезнью» – термин, используемый реставраторами.
Теперь перейдем к железным сплавам, они заметно менее коррозионностойки в сравнении с медными сплавами. При почвенной коррозии железных сплавов под действием кислорода и влаги образуются оксиды и гидроксиды железа Fe2O3·nH2O желтовато-коричневого цвета, синеватый фосфат железа Fe3(PO4)2·8H2O, желтовато-серый карбонат FeCO3.
Для предмета, находящегося в почве, сохраняется определенное равновесие между металлом и окружающей средой, но при извлечении его из археологического слоя это равновесие нарушается: меняется влажность и облегчается доступ кислорода, в результате увеличивается скорость коррозии. Ионы хлора, попавшие в объект из почвенной влаги, реагируя с металлом, образуют хлориды железа, которые, в свою очередь, при гидролизе выделяют хлороводород HCl, который взаимодействует с металлической поверхностью. Место коррозии все время перемещается, затрагивая новые участки сохранившегося металла, что приводит к активному разрушению предмета. Таким образом, реставрацию извлеченного предмета нельзя отложить на неопределенное время, необходимо как можно раньше приступить к обработке.
Не только восстановить, но и уберечь
Состав металла в археологических предметах в настоящее время подробно изучен с помощью микроскопического исследования участков протравленной поверхности, а также с использованием современных спектральных методов, которые позволяют провести анализ без взятия пробы. Эти сведения помогают провести более точную датировку таких предметов, кроме того, по содержанию примесных металлов можно определить состав использовавшихся в то время рудных месторождений. Широко известный радиоуглеродный метод, используемый для датировки остатков органического происхождения, в этом случае малоприменим, так как он «работает» только при наличии атомов углерода, и иногда он может быть полезен при определении возраста органических наслоений.
Если вопросы, касающиеся состава археологических предметов, в настоящее время успешно решают с помощью современных физических методов, то во всем, что относится к процедуре их восстановления после коррозии, протекавшей в течение столетий, еще существует много проблем.
Наука реставрации накопила громадное количество разнообразных приемов, позволяющих вернуть корродированным предметам вид, близкий к первоначальному. В большинстве случаев используют реагенты, широко применяемые для очистки и консервации металлов. Отдельные оригинальные методики удалось создать некоторым талантливым реставраторам, сочетавшим знание химии с искусством экспериментатора. Тем не менее многие из разработанных приемов хотя и позволяют на какое-то время достичь нужного результата, но сохраняют этот эффект ненадолго.
Первый этап работы с археологическим предметом – очистка от загрязнений, представляющих собой жировые наслоения, смешанные с частицами органических веществ и остатками почвы. Далее следует химическая очистка от продуктов коррозии.
А теперь рассмотрим некоторые устоявшиеся методики. Для очистки медных изделий испробовали много различных реагентов: щелочной раствор сегнетовой соли NaKC4H4O6•4H2O (рис. 8.26), фосфат натрия (он входит в состав бытового средства калгон для смягчения воды), сульфамидную кислоту HOS(O)2NH2. Все эти средства не удаляют красно-коричневый куприт Cu2O. Широко используют препарат трилон Б – динатриевую соль этилендиаминтетрауксусной кислоты, при этом ион металла «укрывается» во внутренней полости молекулы, а металлическая поверхность не затрагивается (рис. 8.27).
Этот реагент растворяет практически все нерастворимые в воде продукты коррозии – оксиды, гидроксиды и карбонаты. Однако он заметно ослабляет сам металл, это так называемое «растравливание».
При электрохимических методах очистки существует опасность того, что поверхность покроется тонким слоем свежевосстановленной меди, имеющим яркую красноватую окраску. В результате старинный предмет приобретет вид недавно изготовленной поделки.
Пожалуй, самое важное, что все найденные методики не решали проблему стабилизации – сохранения на долгое время результатов реставрации.
При реставрации бронзовых предметов основная проблема та же: чтобы сохранить полученные результаты, необходимо удалить следы хлорида меди CuCl2, приводящие к появлению «бронзовой болезни». Часто используют длительную многократную промывку водой (иногда в течение нескольких месяцев) для извлечения ионов хлора Cl– из пор, трещин и полостей.
При обработке водным раствором сесквикарбоната натрия (смесь кислого и среднего карбоната натрия NaHCO3 + Na2CO3) галогениды переходят в труднорастворимые карбонаты, которые «запечатывают» хлориды меди в порах и трещинах, предохраняя их от контакта с влагой. Процесс длится несколько месяцев (при этом необходима ежедневная замена реагента), кроме того, диффузия (проникновение) новых порций реагента в мелкие полости заметно затруднена.
При коррозии предметов из железных сплавов наиболее агрессивные продуты коррозии – хлориды железа (так же, как и в случае с хлоридами меди). Эффективна обработка бензтриазолом. Этот препарат широко используют в замкнутых системах водонагрева для предотвращения коррозии аппаратуры. Бензтриазол блокирует металлическую поверхность, препятствуя доступу влаги к активным продуктам коррозии. Применяют также трилон Б.
Результативно использование танина (более известен как дубильное вещество): он не удаляет продукты коррозии, а образует с ними на какое-то время прочные нерастворимые комплексы, предохраняющие железо от дальнейшего разрушения. Идея такого применения танина возникла после археологических раскопок в Англии, где были найдены хорошо сохранившиеся железные предметы, несмотря на то что почвы в этом районе были весьма агрессивны. Оказалось, что на месте раскопок прежде находились мастерские по дублению кож и в землю выливали отработанные растворы, содержащие танин. Опыт работы с танином показал, что он не предотвращает рецидивную (повторно возникающую) коррозию, кроме того, поверхность предмета приобретает черный цвет.
Классический способ консервации железных сплавов, называемый в быту преобразованием ржавчины, состоит в обработке поверхности ортофосфорной кислотой, содержащей ингибитор (например, уротропин), который препятствует взаимодействию кислоты с металлическим слоем. Оксиды железа при такой обработке превращаются в фосфат железа, прочно соединяющийся с поверхностью металла.
Здесь уместно отметить, что проблемы реставрации тесно связаны с чисто эстетическими вопросами. Стараясь сохранить археологический вид предмета, реставратор должен выявить его форму, показать детали украшения или конструктивные особенности, раскрыть гравировку или надпись, при этом, естественно, следует уберечь налет старины. Весьма желательно, чтобы работа реставратора была минимально заметна. Точно так же музыкант-исполнитель не должен стараться «блеснуть» мастерством, его задача – показать красоту самого произведения. Все эти эстетические принципы, определяющие границы допустимого вмешательства реставратора, сформулированы в Международной хартии по консервации и реставрации памятников и достопримечательных мест (Венецианская хартия), которая была принята в Венеции в 1964 г. на II Международном конгрессе архитекторов и технических специалистов по историческим памятникам. Рекомендациями Венецианской хартии руководствуются многие реставраторы, сочетающие искусство химического эксперимента с уважительным отношением к археологическим объектам. Например, крайне нежелательно использовать различные защитные лаковые покрытия, поскольку они отличаются от металла блеском и фактурой, что нарушает эстетическое восприятие древнего предмета (экспонат начинает напоминать лакированную безделушку), кроме того, защитные свойства многих таких покрытий незначительны.
Внушительное обилие рассмотренных реагентов для реставрации не случайно – каждый из них обладает нежелательным побочным эффектом: методика очень длительна и трудоемка или технически трудноосуществима. Некоторые способы были найдены путем экспериментальных поисков, основанных не на детальном анализе химических процессов, а скорее на интуитивно полученном удачном результате. Опыт работы с такими препаратами показал, что при их использовании сохранялась высокая вероятность появления рецидивной (повторной) коррозии после реставрации (в случае медных сплавов – это «бронзовая болезнь»). Все это привело к поиску новых методов реставрации и стабилизации.
Современное решение проблем
Итак, принципы реставрации требуют максимального сбережения информации, имеющейся на экспонате, в том числе сохранения археологического вида – своеобразного аттестата древности предмета. До сих пор не существовало метода, который позволил бы полностью удалить активаторы коррозии, не рискуя при этом разрушить патинированный слой. На первое место встала задача стабилизации этого слоя.
Познакомимся с тем, как решали эти проблемы профессор Д.А. Леменовский из МГУ совместно с кандидатом технических наук М.С. Шемаханской из Государственного научно-исследовательского института реставрации. Все описанное далее представляет собой сочетание химии и технологии, реализованное по заранее продуманному плану.
Первый этап включал поиск новых очищающих средств. Основной задачей было провести химическую очистку поверхности таким образом, чтобы сохранить исторический коррозионный слой (патину). С этой целью были испытаны высокополярные органические растворители моно-, ди- и триэтаноламины общей формулы NHx(CH2OH)3–x, а также современный реактив (именуемый у химиков «королем растворителей») диметилсульфоксид (CH3)2S=O. Были опробованы также смеси этих веществ.
Все указанные реактивы обладают хорошей проникающей способностью и способностью к комплексообразованию с катионами металлов. Они проникают через микропоры и трещины в продуктах коррозии к металлической поверхности. При этом этаноламины связывают не только катионы металлов, но и протоны кислоты Н+, заметно понижая кислотность среды и облегчая удаление хлоридов из коррозионного слоя.
На втором этапе проводили вытеснение из разрыхленного коррозионного слоя активных хлор-анионов, замещая их поливалентными борат-анионами (для медных сплавов) или фосфат-анионами (для железных сплавов). С этой целью использовали обработку борной кислотой или производными фосфорной кислоты.
Оказалось, что выбранные реагенты и предложенные процедуры не оказывают вредного воздействия на сам металл, кроме того, обработка фосфат- или борат-анионами позволяет даже несколько повысить механическую прочность исторического коррозионного слоя.
Третий этап – пассивирование поверхности металла и коррозионного слоя действием органических комплексообразователей. Были испытан фталоцианин, его молекула, собранная из азотсодержащих циклов, активно связывает ионы металлов в комплексы, прочно удерживая их внутри циклической молекулы, что несколько напоминает показанный ранее «захват» ионов молекулой трилона Б, однако образующийся комплекс заметно более устойчив (рис. 8.28).
В результате на поверхности металла образуется тончайшее невидимое покрытие, устойчивое к окислению и эффективно защищающее поверхность.
Четвертый этап представляет собой предварительную оценку результатов консервации. Для этого использовали влажную камеру – лабораторный эксикатор с водой в нижнем отделении. При этом создается 100 %-ная влажность, вызывающая ускоренную коррозию, что провоцирует (в случае медных сплавов) возникновение «бронзовой болезни». Это помогает обнаружить отдельные рецидивные очаги коррозии. Их возникновение – результат неполного удаления активных хлорид-анионов из наиболее глубоких коррозионных каверн и раковин, которые стали доступны после удаления основного коррозионного слоя.
Диффузия реагентов в глубокие коррозионные каверны оказалась самым медленным процессом. Необходимо было найти способ активизировать поступление стабилизаторов на труднодоступные участки поверхности.
Поэтому на пятом этапе вслед за проведенными испытаниями во влажной камере проводили повторную химическую обработку экспонатов. При этом было введено дополнительное ультразвуковое воздействие невысокой мощности. В результате заметно стимулировалась диффузия реагентов внутрь коррозионных раковин и в труднодоступные полости.
Общая схема разработанной методики изображена на рисунке 8.29.
На рисунках 8.30 и 8.31 показаны некоторые исходные предметы и результаты их реставрации по новой методике.
В среднем вся процедура обработки занимает 15–20 дней (при традиционных методах требуется несколько месяцев).
Разработанная методика достаточно универсальна, однако при переходе от сравнительно небольших предметов к более крупным потребуется заметное изменение технологии. Необходимость этого существует давно не только для археологических предметов, но и для монументальной скульптуры, длительное время находившейся на открытом воздухе. Например, бронзовый памятник Минину и Пожарскому (рис. 8.32), расположенный в ограде Покровского собора на Красной площади (был установлен в 1818 г.), в настоящее время, по мнению независимых авторитетных экспертов, нуждается не просто в срочной, а в экстренной реставрации – «бронзовая болезнь» видна даже неспециалисту.
Заканчивая рассказ о новом методе реставрации, отметим, что за рамками повествования осталась не менее увлекательная часть работы, связанная с датировкой археологического предмета, выяснением технологии его изготовления, составом и местонахождением исходных рудных месторождений. Не менее интересно установить область применения экспоната, а также сопутствовавшие этому различные традиции и обряды. В результате обычный экспонат наполняется особым смыслом и жизнью. Не можем не упомянуть о том, какие совершенно непередаваемые чувства испытывает реставратор, работая с предметами древнего быта, когда через его руки проходит само Время.
Перефразировав последнюю строку из эпиграфа, помещенного в начале этого рассказа, подивимся могучим способностям древних цивилизаций, владевших хорошо отработанными технологиями и умевших создавать исключительно полезные и часто эстетически привлекательные предметы.