Карнавал молекул. Химия необычная и забавная — страница 9 из 25

Новая «Царская водка»

Внутри каждого из нас царская душа,

каждый хочет, чтобы ему было все позволено,

но не хочет быть жертвой чужого произвола.

ЛУЦИЙ СЕНЕКА-МЛАДШИЙ

Производители спиртных напитков, желая привлечь покупателей, дают различным сортам водки звучные имена; самое яркое, пожалуй, «Царская водка», что предполагает необыкновенные вкусовые качества (рис. 4.27). Такую водку можно увидеть на прилавках магазинов, но химиков от этого названия буквально передергивает, поскольку они знают, что это словосочетание означает нечто совсем неаппетитное – едкая жидкость, растворяющая «царя металлов», т. е. золото.


Царская водка – не напиток

Царская водка появилась во времена алхимии, она представляет собой смесь трех объемных частей концентрированной соляной кислоты и одной объемной части концентрированной азотной. Такая смесь превращает в хлориды даже золото и платину, которые нерастворимы в каждой из этих кислот в отдельности.

Сама царская водка не просто смесь кислот, это продукт их взаимодействия, в результате чего получаются нитрозилхлорид NOCl и хлор (рис. 4.28).



Еще древние алхимики знали, что царская водка должна быть свежеприготовленной. Все дело в том, что при длительном хранении из нее улетучивается хлор и она перестает работать.

Два реагента, образовавшиеся в царской водке, взаимодействуют с металлическим золотом Au, переводя его в хлорид AuCl3 (рис. 4.29).



Образовавшийся хлорид золота присоединяет молекулу HCl, образуя комплекс – золотохлористоводородную кислоту H(AuCl4). Обычно такой продукт называют хлорным золотом, он кристаллизуется из водного раствора с четырьмя молекулами воды H(AuCl4)·2О в виде светло-желтых кристаллов.

С платиной реакция протекает точно так же, только хлорид платины присоединяет не одну, а две молекулы HCl, давая платинохлористоводородную кислоту H2(PtCl6), которая при концентрировании раствора образует красно-бурые кристаллы состава H2(PtCl6)·6H2O.

Сразу отметим, что термин «растворение» здесь и далее мы используем условно, так исторически сложилось – когда речь идет о царской водке, употребляют этот термин. Если происходит истинное растворение, то после удаления растворителя соединение получают в том же виде, в каком оно было до растворения. В тех случаях, которые мы обсуждаем, металлы не просто растворяются, а переходят в хлориды. Итак, это химическая реакция, подобная взаимодействию более активных металлов, например цинка или железа с соляной кислотой. Взаимодействие металлов с кислотами, приводящее к получению солей, исторически всегда было объектом внимания неорганической химии. Постепенно к реакциям, позволяющим переводить металлы в их соединения, подключилась и органическая химия.

Металлы и органические растворители

В 90-х гг. ХХ в. исследователями было обнаружено, что металлы можно «растворять» в органических растворителях. Внешне это выглядит, как «растворение» металла в кислоте, только вместо кислот используют органические соединения, что весьма необычно. Наиболее универсальной оказалась пара органических растворителей: диметилсульфоксид (ДМСО) Me2S=O и четыреххлористый углерод CCl4. Такая смесь способна растворять Co, Cr, Fe, Ni, Cu, Zn, Cd, Mo, W. Вместо ДМСО с таким же успехом можно использовать диметилформамид (ДМФА) Me2N – C(O)H. В результате образуются комплексы хлорида металла с ДМФА, что показано на примере растворения меди. Состав такого комплекса можно изобразить компактно как (CuCl2)2(ДМФА)4 (рис. 4.30).



Принцип одновременного действия двух растворителей понятен: CCl4 – галогенирующий агент, а ДМФА, образуя комплекс, удерживает полученное соединение в растворе.

Благородные металлы тоже не устояли. При действии на золото смеси диметилсульфоксида Me2S=O и бутилбромида C4H9Br образуется AuBr3. Итак, по существу это новая царская водка (рис. 4.31).



ДМСО участвует в качестве реагента, а его избыток удерживает получившуюся соль золота в растворе за счет комплексообразования.

Иные растворители – новые возможности

В 2010 г. профессор К.П. Вонг (рис. 4.32) из Технологического института в штате Джорджия, США, нашел новый способ переводить в раствор благородные металлы. Вначале он обнаружил, что золото растворяется в смеси пиридина С5H5N и тионилхлорида Cl2S=O. Молекулы пиридина образуют катион из трех соединенных молекул, который соединен со знакомым нам уже анионом AuCl4. Последующие эксперименты показали, что такая система растворяет и другие благородные металлы; вместо пиридина можно использовать диметилформамид (ДМФА), пиразин N2(CH2)4 и некоторые другие соединения, но тионилхлорид оказался незаменимым компонентом.



Автор этих работ употребляет термин «растворение» условно, на самом деле происходит окисление нуль-валентного металла, или, точнее, окислительное растворение (рис. 4.33).



Основное достоинство новых систем состоит в том, что изменение состава позволяет «настроить» их на определенный металл. Например, в смеси SOCl2 + ДМФА растворяется только золото. Композиция SOCl2 + пиридин растворяет золото и палладий, но не платину. При изменении условий (температура, длительность процесса) реализуется более тонкое разделение металлов. Все это может быть использовано при очистке благородных металлов от примесей и для извлечения их из отслуживших свой срок деталей электроники или отработанных катализаторов. Новая технология может также найти применение в процессах избирательного формирования нанопокрытий.

Эти композиции, состоящие из SOCl2 и органического соединения, представляют собой удобную замену традиционной царской водки, которая, не разбираясь, растворяет все подряд.

Водородная карусель

Нам теперь – имей в виду! –

Надо быть с толпой в ладу:

Деспотизм сейчас не в моде,

Демократия в ходу.

Уезжал бы ты отсель

В энтот… как его… в Бруссель,

Раз такая происходит,

Извиняюсь, карусель!

ЛЕОНИД ФИЛАТОВ. «ПРО ФЕДОТА-СТРЕЛЬЦА»

Фундамент всей органической химии – это углеводороды, вещества, в которых атомы углерода окружены атомами водорода. Химическая связь С – Н очень типична для органической химии, она присутствует практически всегда и хорошо изучена.

Ближайший аналог углерода – кремний – тоже может образовывать связи с водородом Si – H, но только их свойства совсем не те, что у связей С – Н. Электроотрицательность – способность притягивать к себе электроны – у кремния ниже, чем у углерода, поэтому электроны связи Si – H сдвинуты к водороду. Такой сдвиг обозначают значком δ (дельта) с плюсом или минусом, например Siδ+–Hδ. Если оторвать от кремния атом Н, он уйдет в виде аниона Н‾, а кремний останется в виде катиона Si+.

Существуют реагенты, которые могут забрать Н‾ у кремния: например, соединение, представляющее собой ионную соль [Ph3C]+[B(C6F5)4] (такое же, как Na+Cl). Происходит это следующим образом: катионная часть Ph3C+ комплекса забирает у кремния Н, а анион [B(C6F5)4] остается неизменным, только у него теперь уже другой противоион Si+, т. е. фрагменты молекул меняются партнерами (рис. 4.34).



Напомним, что в реакционной смеси катион не существует без аниона или анион без катиона, но в схемах реакции иногда показывают только тот ион, с которым происходят превращения.

Самое интересное случается, если рядом с «обнаженным» атомом кремния Si+, окажется другой атом со связью Si – H, как, например, в молекуле, показанной на рисунке 4.35. Атом Si+ потянет на себя атом водорода от соседа, но полностью оторвать его не сможет. Атом Н окажется в равноправном совместном владении двух атомов Si, что обозначено пунктирными связями. Атомы кремния становятся полностью одинаковыми по своему положению и окружению, такие атомы называют структурно эквивалентными. В результате положительный заряд потеряет свое конкретное место, поэтому молекулу помещают в квадратные скобки и указывают, что это катион (+).

Чтобы не загромождать рисунок, обычно используют не обе квадратные скобки, включающие ион, а только часть правой скобки и рядом указывают знак заряда. Далее именно так мы и будем поступать.



Что произойдет, если у триады Si – H – Si окажутся еще соседи со связями Si – H? Такое сумел реализовать наш соотечественник профессор Г.И. Никонов (рис. 4.36), работающий сейчас в Канаде (а совсем не Брюсселе, как сказано в эпиграфе). Он заместил все атомы Н в бензоле группами Me2SiH, а затем отщепил Н‾ от одного из атомов кремния. Вначале произошло то, что и следовало ожидать: точно так, как показано ранее, атом Н в соседней группе Si – H подтянулся к атому Si+ (рис. 4.37).



Интересно, что на этом процесс не остановился. Один атом Н на два атома Si в группировке Si – H – Si создал некую «неуютность». Каждому из этих двух атомов кремния хочется иметь свой персональный атом Н, и участники триады Si – H – Si подтянули к себе водородные атомы от соседей, но в равноправное владение их заполучить не удалось, поэтому одна связь показана штрихами, а вторая – обычной валентной палочкой (рис. 4.38).




Возникает естественный вопрос, как Г.И. Никонов узнал, что молекула находится в таком необычном состоянии. Существует удобный спектральный метод ядерно-магнитного резонанса (ЯМР), который «чувствует» неэквивалентность («неодинаковость») атомов и даже показывает, сколько сортов таких атомов в веществе; чаще всего этот метод применяют для наблюдения за атомами водорода. На рисунке 4.38 мы видим, что присутствует три «сорта» атомов Н в связях Si – H. Это та самая структурная неэквивалентность. На спектре ЯМР были обнаружены именно три сигнала, причем в количественном соотношении 1:2:2, т. е. с помощью метода ЯМР буквально их пересчитали. Кстати, атомы Н в метильных группах СН