Карта Вселенной. Главные идеи, которые объясняют устройство космоса — страница 14 из 52

{6}.

Следуя постулатам Ньютона, Мичелл рассматривал свет в качестве потока крошечных частиц (корпускул) и поэтому полагал, что массивные звезды должны оказывать на эти частицы такое же гравитационное воздействие, как и на другие оказавшиеся вблизи астрономические объекты (например, кометы). Поскольку гравитационное воздействие прямо пропорционально массе звезды, Мичелл далее предположил, что могут существовать исключительно массивные звезды, способные полностью останавливать свет. В письме к Генри Кавендишу, датированном 27 ноября 1783 г., он верно догадался, что такие «темные звезды» должны обнаруживаться лишь по гравитационному воздействию, которое они могут оказывать на окружающие их тела. Эту идею (фактически, определение черных дыр в рамках ньютоновской механики своего времени) Мичелл опубликовал в журнале Philosophical Transactions of the Royal Society of London. Он не был одинок в этих теоретических построениях. Всего через 13 лет похожую концепцию предложил в своей книге «Изложение системы мира» (Exposition du système du monde) французский математик Пьер-Симон Лаплас, который пришел к выводу: «…возможно, что по этой причине остаются невидимыми для нас самые большие светящиеся тела во Вселенной». Впрочем, когда позднее корпускулярная теория света Ньютона потеряла свою популярность (вследствие чего была забыта и идея о «темных звездах»), Лаплас полностью выбросил все упоминания об этой гипотезе из более поздних изданий своей книги{7}.

Прошло еще 150 лет, и представление об этих астрономических объектах воскресло в рамках ОТО Эйнштейна. Эта теория выросла из более простой идеи. Еще в 1905 г. Эйнштейн опубликовал специальную теорию относительности (СТО), в которой постулировал, что ни один объект не может двигаться со скоростью, превышающей скорость света. Существование предельной скорости имело для науки очень глубокие последствия. Прежде всего, была установлена невозможность передачи вещества или информации со скоростью больше максимально возможной. Из этой теории возникла и знаменитая формула эквивалентности энергии и массы, выражаемая ставшей общеизвестной формулой E = mc2. Однако в 1915 г. Эйнштейн предложил общую теорию относительности, глубоко изменившую наши представления о массе, гравитации и пространстве, что и позволило возродиться идее о черных дырах{8}. Математика ОТО позволяет по-новому визуализировать окружающую нас реальность. Как описывалось в предыдущей главе, новая теория привела к возникновению новой модели Вселенной, ставшей первым крупным пересмотром картины мира со времен Ньютона. При этом, однако, к глубокому разочарованию самого Эйнштейна, эта теория допускала существование черных дыр.

Рискуя навлечь на себя обвинения в искажении светлого образа Эйнштейна, мы должны отметить, что он выступал против концепции расширяющейся Вселенной и ненавидел идею черных дыр. Это может быть объяснено, кстати, следующим обстоятельством: восхищение физиков работами Эйнштейна связано, хотя бы частично, с тем фактом, что ему удалось построить великую ОТО буквально из ничего (ex nihilo), то есть без объяснения каких-то наблюдаемых явлений. Это безупречно настолько, насколько может быть безупречна физическая теория. Поэтому ОТО вызывала особое уважение в качестве примера демонстрации могущества умозрительных рассуждений, позволяющих достичь чисто математического описания природы. Его теория предполагала глубокое понимание природы гравитации — таинственной силы, удерживающей в единстве не только Солнечную систему, но и Вселенную в целом. В течение всей своей научной деятельности Эйнштейн руководствовался стремлением постичь единство и простоту устройства мира. Именно эти философские убеждения иногда мешали ему воспринимать и признавать необычные результаты, даже если они вытекали из его собственных работ и теорий. Так было и в случае черных дыр.

Теория Эйнштейна была не только математически элегантной и независящей от наблюдений, но сделала несколько важных научных проверяемых предсказаний. При этом теория значительно обгоняла существующие потребности и возможности ее проверки или применения. В некотором смысле можно сказать, что в начале прошлого века ОТО представляла собой «стерильно чистую» область физики, далекую от мейнстрима научных изысканий эпохи. Она имела важное значение для астрономии, но и в астрономии не была связана с реально существующими физическими объектами, по крайней мере в самом начале прошлого века. ОТО стала использоваться для описания Вселенной (как единого целого) уже в первые десятилетия после своего создания. Поскольку предсказываемые теорией наблюдаемые эффекты были очень слабыми для астрономических объектов с небольшой массой, теория оставалась незадействованной в наблюдениях вплоть до обнаружения в космосе новых экзотических объектов (типа нейтронных звезд, пульсаров и квазаров), при описании которых и проявились ее богатые возможности. Таким образом, когда в начале 1960-х гг. астрономы обнаружили в космосе эти сверхтяжелые объекты, теория Эйнштейна уже была достаточно развита и разработана для их описания.

Сегодня наиболее убедительные доказательства существования черных дыр получены для спиральной галактики NGC4258, внутри которой располагается черная дыра, массивнее Солнца примерно в 40 млн раз. Чтобы почувствовать масштаб, представьте, что при картографировании внутренних областей этой галактики в радиодиапазоне астрономы обнаружили диск, который, по-видимому, является резервуаром газа, закручивающимся в черную дыру, настолько широким, что свету потребовался год, чтобы пересечь его (если газ не будет захвачен черной дырой). Именно эти объекты управляют движением звезд внутри галактик. Сейчас предполагается, что в центре самых ярких галактик также располагаются сверхмассивные черные дыры с массой, превышающей массу Солнца в миллиарды раз{9}.

Для понимания природы и свойств черных дыр необходимо разобраться с гравитацией, предлагаемой в теории Эйнштейна. Гравитация является одной из известных нам фундаментальных сил природы (хотя и не самой мощной из этих сил), ничто не может ее избежать: ни звезды, ни планеты, ни галактики. Ньютон первым понял природу гравитации в качестве силы притяжения, обеспечивающей не только наш вес и притяжение тел к Земле, но и движение планет по их орбитам. Сила притяжения возрастает с ростом массы и плотности тел. В результате черные дыры с их огромной массой и плотностью являются источниками мощнейших сил притяжения во Вселенной. Из общего курса физики мы знаем о так называемой скорости убегания, то есть скорости, которую должно набрать какое-нибудь тело, чтобы оторваться от притягивающего его небесного тела. Например, для отрыва от гравитационного поля Земли ракета должна разогнаться до 40 000 км/ч[5], и именно такую скорость развивают двигатели ракетных систем при запуске спутников на всех космодромах Земли, от мыса Канаверал (США) и Байконура (Казахстан) до Шрихарикоты в Индии. Для сравнения можно отметить, что скорость убегания для Солнца (масса которого превышает массу Земли в 330 000 раз) равна примерно 4 млн км/час, что все еще в 250 раз меньше скорости света. А что произойдет, когда скорость убегания от какого-то космического тела сравняется или превысит скорость света? Именно этот вопрос поставил перед собой Мичелл, размышляя о распространении света звезд, и получил ответ: возникнет черная дыра. Даже отраженный свет не раскрывает присутствие черных дыр. И они не просто звезды, скрытые экстремальным искривлением лучей света. Их сильное гравитационное притяжение буквально деформирует пространство и нарушает течение времени в своем ближнем окружении. Вот почему, чтобы понять черные дыры, нам нужно мыслить, как Эйнштейн.

Еще самая первая и основополагающая статья Эйнштейна, опубликованная в Annalen der Physik в 1905 г., содержала в себе замечательные идеи{10}.

Эйнштейн предложил глубокую и совершенно новую теорию, полностью меняющую общее понимание соответствий между массой, гравитацией и пространством. Ньютон рассматривал гравитацию в качестве сил притяжения, мгновенно действующих между любыми объектами, обладающими массой. СТО Эйнштейна постулирует конечность скорости света, что делает невозможным мгновенное взаимодействие. В отличие от идей Ньютона, в ОТО Эйнштейна обладающие массой объекты сами создают некое гравитационное поле, которое, в свою очередь, изменяет форму пространства. В этой картине гравитация соответствует не силам притяжения, а, скорее, некоторым искажениям пространства, которые вынуждают тела двигаться в ответ на присутствие массы. Центральным понятием в ОТО является единое четырехмерное пространство-время. Вся Вселенная и все ее содержимое — галактики, звезды и планеты — обитает в этом пространстве-времени. Это пространство-время можно представить себе в виде воронки, которая действует на движения объектов и поток времени. Визуально ее можно представить в виде некоторого рельефа (типа топографической карты), где впадины соответствуют присутствию массивных тел, как показано на рисунке выше.



Скачок, который совершил Эйнштейн, заменив ньютоновское представление о гравитации на предлагаемую им теоретическую модель, может служить редким примером так называемого индуктивного подхода в науке. Хотя чистая теория Эйнштейна и не основывалась на наблюдениях, она сделала конкретные проверяемые прогнозы, которые и помогли оценить ее действенность. Такой подход может показаться нетипичным для обычных отношений между теорией и наблюдениями в науке, где теории создаются для объяснения наблюдаемых фактов посредством дедуктивных выводов.