{29}.
Идея, предложенная Финци, требует от нас понимания, как работает ньютоновская гравитация. Согласно теории Ньютона, сила гравитационного притяжения уменьшается с расстоянием. Чем дальше находятся массы друг от друга, тем слабее сила их взаимного притяжения. В этой форме закон отлично действует в нашей обычной жизни на Земле, а с небольшими поправками на основании ОТО Эйнштейна продолжает работать и в рамках Солнечной системы. Но что, если мы углубимся в космос?
Физики Яаков Бекенштейн и Мордехай Милгром под впечатлением от работы Финци задумались: а что, если бы в космических масштабах гравитация могла выглядеть по-другому, в условиях, где спровоцированные гравитацией ускорения крайне малы? Они предложили теорию, которая изменяет законы гравитации при подобных параметрах, и назвали ее модифицированной ньютоновской динамикой (MOND){30}.
Несмотря на новые надежные доказательства существования огромной массы темной материи, все зависит от интерпретации данных, так как пока не обнаружены частицы темной материи. Согласно MOND, когда ускорение вследствие гравитации падает ниже определенного значения, сила притяжения перестает уменьшаться и начинает расти. В случае звезд, вращающихся в галактике, ускорение и расстояние от центра галактики взаимосвязаны и гравитация действует по-другому и куда сильнее, чем предполагают законы Ньютона. Согласно наблюдениям, на окраинах галактики звезды вращаются вокруг галактического центра с той же скоростью, что и более близкие к нему звезды. В соответствии с данными наблюдений теория MOND успешно объясняет движение звезд в галактиках и весьма эффективна в случае тусклых галактик, но она никак не работает для скоплений, где впервые появилась потребность в темной материи для объяснения результатов наблюдений.
Единственный пункт, в котором MOND с треском провалилась, — это разъяснение наблюдаемых и подтвержденных эффектов отклонения световых лучей около скоплений. Даже если ньютоновские законы и были изменены, необходимо придерживаться ОТО Эйнштейна, ведь мы можем наблюдать эффект гравитационной линзы. Нам нужна масса — хотя бы исходя из общей относительности, — которая бы искривляла пространство и воздействовала на траектории световых лучей. Чтобы объяснить отклонение света, которое наблюдается у скоплений, нам нужно большое количество невидимой массы. В теории MOND, как выяснилось, также придется задействовать невидимый дополнительный компонент массы, чтобы обосновать линзирование, и некоторые исследователи вновь привлекли на роль темной материи в скоплениях крошечные частицы — нейтрино. Такое препятствие — неспособность соответствовать наблюдаемым данным линзирования без привлечения нейтрино — снижает убедительность и привлекательность MOND. Изменив гравитацию, эта теория освобождается от необходимости в темной материи в рамках галактик, но не может обойтись без нее в скоплениях. В настоящее время господствует теория холодной темной материи. Данные «Хаббла» показали, что во Вселенной достаточно распространено линзирование вблизи галактик и скоплений и все существующие наблюдения полностью соответствуют теоретическим прогнозам относительно скопления и распространения темной материи{31}.
MOND не в силах повторить все впечатляющие успехи, которыми отметилась теория холодной темной материи. Ключевой ее недостаток состоит в том, что она не является действительно всеобъемлющей теорией подобно теориям Ньютона и Эйнштейна; при этом она не выдвигает каких-либо базовых физических оснований для предполагаемого изменения гравитации, ее цель лишь в том, чтобы соответствовать эмпирическим данным. Также малоправдоподобным остается шанс на более глубокую базовую поддержку теории, которая дала бы нам изменение гравитации, предполагаемое MOND. Если бы такая теория существовала, она должна была бы объяснить все существующие наблюдения, все функции темной материи — формирование структуры Вселенной, расширение Вселенной и отклонение света — и создать новые доступные для проверки предположения для замещения гипотезы о темной материи.
Когда речь заходит о любой новой теории, которой предстоит заменить старую, эта теория должна объяснять все существующие данные и выдвигать дополнительные прогнозы, которые мы можем подтвердить с помощью наблюдений. Чтобы две конкурирующие теории могли всерьез соперничать друг с другом, они должны обосновывать существующие данные и генерировать доказуемые прогнозы. Поэтому, хотя MOND пока еще не является по-настоящему жизнеспособной альтернативной теорией, в ней можно увидеть окошко для альтернативной теории гравитации. MOND предоставляет действующее и активное поле для исследований, хотя над ее проверкой работает лишь горстка астрономов и есть небольшое число теоретиков, которые пытаются усовершенствовать формулы. Несмотря на вышесказанное, можно ждать очень горячих споров на тему MOND против холодной темной материи. Теория холодной темной материи имеет огромный потенциал, но есть и пробелы — случаи, когда она не до конца соответствует наблюдениям. Некоторые шероховатости между этой теорией и эмпирикой можно заметить в примере, когда барионы (обычные атомы) сталкиваются вблизи частиц темной материи, как, например, в самых удаленных районах галактик. В центре галактик, где звезды теснятся друг к другу и барионы превышают количество частиц темной материи, модель холодной темной материи не в состоянии корректно обосновать наблюдаемые свойства[18]. Разделение функций темной материи и обычных атомов в таких перенаселенных космических уголках стало вызовом и для наблюдателей, и для численного моделирования.
Выходит, вся Вселенная кишит темной материей, космической паутиной с четкой нитевидной структурой, которая пронизывает межгалактическое пространство. Сегодня у нас есть точные карты темной материи, полученные на основании наблюдений гравитационного линзирования. Самые последние карты, характеризующиеся высокой надежностью, созданные моей исследовательской группой на базе данных о линзировании в скоплении, предоставленных проектом Frontier Fields, выявили наличие объекта, который представляет собой кольцо из темной материи вокруг крохотных галактик-карликов внутри скоплений, расположенных на расстоянии в 5 млрд световых лет от нас. Отклонение света позволило нам измерить количество темной материи, связанной с самыми маленькими кластерными галактиками во Вселенной. И, судя по всему, темная материя существует во Вселенной в разных масштабах. Все же стоит спросить, действительно ли природа гравитации не меняется на космических расстояниях и почему это происходит. Продуктивнее всего было бы, конечно, найти гипотетическую частицу темной материи — недостающее тело на месте преступления. Если говорить о рассматриваемых вариантах, мы изучили целый диапазон — от обычной материи в виде планет, тусклых звезд и черных дыр до экзотических частиц. Специалисты по космологии упоминают всю совокупность вариантов обычной материи как массивные компактные объекты гало (MACHOs). Сейчас теория говорит нам, что если бы темная материя не отличалась от обычных атомов и частиц, то тогда всей имеющейся материи было бы все же недостаточно. Мы можем рассчитать, сколько обычных атомов было создано при Большом взрыве, и наблюдения за оставшимся излучением подтверждают это число. Если взглянуть на сумму массы во Вселенной, становится понятно, что нам нужна своего рода экзочастица, созданная на ранних этапах развития Вселенной, которая отличается от обычной материи и отвечает за всю предполагаемую темную материю. Конечно, такие частицы по определению было бы трудно отследить, так как они достаточно пассивны и едва ли взаимодействуют с обычной материей. Такие слабовзаимодействующие массивные частицы (получившие от космологов наименование WIMPs) с легкостью пройдут прямо сквозь ваше тело. В настоящее время проводятся многочисленные эксперименты с целью непосредственного обнаружения частиц темной материи — WIMP, — которые блуждают неподалеку от Земли, однако пока эта загадочная вездесущая частица ускользает от ученых.
Разъяснение роли темной материи во Вселенной обозначает начало новой главы в космологии. В последние 60 лет научная практика постепенно развивалась, что требовало командной работы и арсенала новых приборов. Сегодня мощные компьютеры с высокими графическими характеристиками позволяют нам проследить развитие Вселенной и визуализировать данный процесс, что обеспечивает возможность прямого сравнения с астрономическими наблюдениями. Одно из ключевых ограничений для нас как для космологов заключается в том, что мы, в отличие от других ученых, не можем осуществлять контролируемые эксперименты. Что обнаружили, то и получили. Космология, изначально основанная на абстрактных теориях, сегодня получила статус уважаемой науки, так как цифровые модели стали своеобразным аналогом экспериментов. К 1980-м гг. в космологии сформировалось три метода исследования, три независимых подхода, имеющие важнейшее значение для генерирования новых знаний и проверки новых идей, — теория, наблюдение и компьютерное моделирование. Благодаря стремительному развитию технологии и вычислительной техники сегодня мы можем создать подробные космологические модели, вышедшие за границы своей первоначальной функции — подтверждение наблюдений, — и направлять науку к тем вопросам, которые находятся у переднего края исследований. Эта перемена произошла благодаря генерирующей способности моделирования, которое из довольно ограниченного способа проверки идей выросло в мощный метод формирования нового знания. Сегодня модели позволяют взглянуть на астрофизические процессы, не только крайне сложные, но и взаимодействующие друг с другом на таком уровне, который не могут спрогнозировать обычные бумажные расчеты.
История признания темной материи звучала совсем не так, как это было с двумя другими революционными идеями— с ними мы столкнулись в предыдущих главах: речь идет о расширяющейся Вселенной и черных дырах. Во-первых, первоначальные гипотезы о темной материи основывались исключительно на эмпирических данных, и обосновывающий их теоретический контекст был разработан уже задним числом. Во-вторых, нет никаких сомнений в том, что изобрете