Карта Вселенной. Главные идеи, которые объясняют устройство космоса — страница 31 из 52

исс среди коллег имел репутацию специалиста по учету влияния космической пыли. Он добавил к списку своей команды еще 21 близкую сверхновую, которые обнаружил во время подготовки диссертационного исследования по развитию метода калибровки кривых блеска. Данные по этим звездам еще не публиковались. Используя их для привязки к той части знаменитой диаграммы Хаббла, которая соответствует малым красным смещениям, Рисс только в это время обнаружил, что решение приводит к модели Вселенной, в которой не просто нет материи, а есть отрицательная материя!{14} Он понял также, что для объяснения загадочного результата по сверхновым и их согласования с другими астрономическими данными для выявления зависимости геометрии Вселенной от ее наполнения, например, исследованиями реликтового излучения к рассмотренным ранее компонентам для величины омеги необходимо добавить еще что-то.

Ситуация была тревожной, и Рисс начал проверять каждый этап своей работы вместе с коллегой по команде Шмидтом, который проводил независимые расчеты, пользуясь собственной программой. Обычно они регулярно связывались по электронной почте, и наконец 8 января 1988 г., непосредственно перед пресс-конференцией Американского астрономического общества, Шмидт послал Риссу следующее сообщение: «Well Hello Lambda!» Соавторы пришли к одному и тому же результату и убедились в существовании ставшей печально известной космологической постоянной Эйнштейна лямбда, причем оба оценили достоверность своих расчетов очень высоко — в 99,7 %. Они сообщили об этом остальным членам «Команды больших Z», поскольку предстояло решить вопросы публикации и определения доли участия каждого. Понимая огромное значение самого факта обнаружения ненулевого значения космологической постоянной, некоторые члены команды выразили свою озабоченность и даже предупредили коллег, что «…пресс-релизы и приостановка публикаций в изданиях [Astrophysical Journal] и Nature могут произвести впечатление только на публику и ученых, проявивших лишь случайный интерес к предмету исследований. Однако основное ядро сообщества ученых-космологов не воспримет наши результаты серьезно, если мы не предъявим более надежные доводы». Шмидт, который серьезно и долго работал над анализом данных независимо от Рисса, подтвердил их сотрудничество по электронной переписке и заявил: «Ситуация с космологической постоянной некомфортна для меня, но я не думаю, что нам следует „сидеть“ на своих результатах в поисках прежних ошибок (это было бы неверным с точки зрения интересов науки)». Филиппенко, астроном из Беркли, который переметнулся в группу Рисса из конкурирующей команды проекта «Космология со сверхновыми» за несколько лет до этого, добавил: «Правильное решение. Мне была ненавистна мысль о том, чтобы другая группа опубликовала свои результаты первой»{15}.



Перлмуттер и его коллеги из команды упорно готовились к пресс-конференции. Интерес средств массовой информации разжигался сведениями о том, что обе группы близки к консенсусу по поводу столь важного вопроса, как судьба Вселенной, оказавшаяся зависимой от таинственной величины, именуемой космологической постоянной. Вначале в центре внимания была команда проекта «Космология со сверхновыми», обнаружившая большее число сверхновых. «Команда больших Z» представила данные только по трем сверхновым. Однако еще до открытия ежегодного собрания Американского астрономического общества в январе 1998 г. в Вашингтоне Перлмуттер с соратниками принялись утверждать, что они могли бы найти доказательства существования не равной нулю космологической постоянной. Группа полагала, что не заметила этого лишь по причине грубой исходной ошибки самого Эйнштейна и его убежденности в статичности Вселенной. Еще через шесть недель на конференции в Лос-Анджелесе команда Рисса после исправления основной погрешности, связанной с учетом поглощения космической пылью, также сообщила о существовании не равной нулю лямбды, что соответствовало гипотезе об ускоренном расширении Вселенной. Астрономические наблюдения, а также данные по реликтовому излучению также указывали на равное 1 значение омеги, которое состоит из вкладов обычной и темной материи и космологической постоянной. Вскоре после этого в журнале Scientific American была опубликована статья журналиста Джеймса Гланца, подробно описавшего всю историю поиска и обнаружения сверхновых{16}. К этому моменту обе группы лишь предъявляли свои доказательства существования космологической постоянной, но воздерживались от притязаний на открытие. Объявление об открытии требовало высшей степени убежденности в правоте, а также уверенности и ответственности за надежность используемой методологии при анализе и оценке ошибок в расчетах.

Наконец, 22 февраля 1998 г. Перлмуттер доложил все результаты «Космологии со сверхновыми» на 3-м Международном симпозиуме по источникам и детектированию темной материи, проводимом в городке Марина-дель-Рэй Калифорнийским университетом. Сразу после симпозиума от команды выступил Филиппенко, начавший свою речь со смелого утверждения: «Вы либо получили результат, либо нет. У „Команды больших Z“, — продолжил он, — один результат есть, и мы его сообщаем публично». Он объявил, что его команда с высокой степенью уверенности утверждает, что космологическая постоянная существует, и может предъявить в пользу этого весомые доказательства. Сверхновые, расположенные на расстояниях в миллиарды световых лет и дальше, кажутся нам более тусклыми из-за того, что Вселенная сейчас расширяется быстрее, чем в тот момент, когда эти звезды взорвались, и отодвигает их дальше от Земли. Само ускоренное расширение вызывается темной энергией, которая проявляет себя в значении космологической постоянной. Темная энергия окончательно стала реальностью. Как легко можно было предвидеть, сразу после этих выступлений между командами (а также внутри самих команд) разгорелась острая борьба из-за оценки заслуг, достижений и наград каждого из участников{17}.

Конечно, при таком великом открытии не обошлось без попыток найти другие возможные объяснения полученным результатам. Возникли подозрения, что природа сыграла с исследователями злую шутку, то есть не являются ли эти самые удаленные от нас сверхновые вообще какими-то другими объектами — совсем иными «зверушками»? Химический состав самых молодых галактик не столь богат, как у более старых, возможно, это могло стать объяснением их пониженной яркости. Однако спектры близких и далеких галактик оказались похожими, а сколь-нибудь заметная разница в составе должна была проявиться и в спектрах, так что обе команды сочли наиболее правдоподобным объяснением то, что Вселенная действительно ускоряется, оставляя сверхновые далеко позади породивших их взрывов. Поскольку обе группы, совершенно независимо друг от друга и пользуясь совершенно разными методами анализа, сумели обнаружить большую часть сверхновых, прийти к одинаковому результату и убедить в этом самих себя и друг друга, им не составило труда убедить в этом и все остальное космологическое сообщество. Теперь при дальнейших обсуждениях не происходило противостояния ярких личностей, тех, кто мог бы оспорить эти претензии, как было в прошлом. Несмотря на то что обнаружение космологической постоянной представляет собой весьма радикальное открытие, оно было воспринято научной общественностью довольно спокойно. Возможно, это объясняется тем, что открытие хорошо согласовывалось с предыдущими результатами того, что омега равна 1, полученными из данных по реликтовому излучению и из других астрономических наблюдений, и оно было принято мягко. Кроме того, признанию новой идеи немало способствовал и тот факт, что космологическая постоянная оказалась старой знакомой теоретиков, представленной в уравнениях Эйнштейна десятки лет назад.

Космологическая постоянная была легко и быстро воспринята учеными, поскольку позволила разобраться с некоторыми старыми проблемами космологии. Например, дала возможность объяснить противоречия, относящиеся к возрасту Вселенной (когда, например, при измерениях возраст некоторых горных пород и даже звезд превышал возраст самой Вселенной), что плохо укладывалось в рамки используемых ранее моделей Большого взрыва и холодной темной материи. С обнаружением темной энергии стало очевидно, что увеличение скорости расширения Вселенной требует учета времени, а это неожиданно приводит к «старению» Вселенной. Существование темной энергии позволяет также понять, почему вклад материи в величину омеги является относительно малым, хотя множество астрономических наблюдений свидетельствует о близком к 1 значении омеги. Из-за этого при «инвентаризации» космоса постоянно терялся один из важных компонентов.

Хотя темная энергия является удобным заполнителем, который помогает увязать несколько наблюдаемых свойств Вселенной, это просто замещающий термин. Как и в случае с темной материей, мы знаем, что темная энергия существует, но мы не имеем представления о ее происхождении и эволюции. Мы смогли как-то улучшить учет содержимого Вселенной, но нам по-прежнему остается непонятным устройство большей части ее содержимого. По-видимому, мы живем во Вселенной, содержащей лишь 4 % обычных атомов (известных нам по периодической таблице элементов), 23 % темной материи и 73 % темной энергии[21], однако у нас нет никакой теоретической основы для описания того, каким образом и где эта энергия зарождается. Можно ли ее назвать квинтэссенцией или фундаментальной силой, как полагают некоторые физики? Зависят ли свойства и количество темной энергии от времени или она стационарна? Все эти и другие вопросы пока остаются без ответа.

Неясно также, чем темная энергия и темная материя отличаются от мифических субстанций — эфира и эффлувии, в существование которых верили ученые древности. Мы имеем множество эмпирических доказательств, независимым образом указывающих на существование темной энергии и темной материи, а также располагаем множеством приборов и технологий, позволяющих исследовать эти субстанции и продолжить изучение их природы и свойств. Уже запланированы запуски спутников и программы работы наземных обсерваторий, специально нацеленных на более глубокое исследование характеристик и природы темной энергии.