Карта Вселенной. Главные идеи, которые объясняют устройство космоса — страница 7 из 52

{5}.

Незыблемые небеса вдохновляли многих поэтов как метафора постоянства и неизменности в эфемерном и изменчивом мире. Такое представление о наличии неколебимого мира, пусть даже далекого и непостижимого, давало человеческой душе чувство стабильности. Что бы ни происходило, звезды оставались бессменными и молчаливыми свидетелями мимолетной драмы человеческой жизни. Вечные декорации мироустройства напоминали о предопределенном небесном происхождении космоса. Понятие незыблемости воспринималось человеческим воображением как достоверный факт, кроме того, было точкой опоры для накопленных человечеством знаний. В аллегорическом произведении Данте Алигьери «Божественная комедия» (XIV в.) восьмое небо, олицетворяющее рай, принадлежит неподвижным звездам, как и предполагал Птолемей.

Время жизни Шекспира (1564–1616) совпало с жизнью Джордано Бруно (1548–1600), Галилео Галилея (1564–1642), Тихо Браге (1546–1601) и Иоганна Кеплера (1571–1630). Все они были натурфилософами — или, как я назову их анахронически, первыми учеными. На Шекспира их открытия оказали огромное влияние. Доработка телескопа, которую осуществил Галилео, позволила значительно расширить обзор вовне и изменила наши знания о небесной сфере. Если же говорить о картине мира, в умах господствовала геоцентрическая теория, которую Птолемей выдвинул в своем «Альмагесте». Это был расцвет астрономической эры — и Шекспир часто прибегал к астрономии в своих рукописях. Он неоднократно обращался к неподвижным звездам в пьесах и сонетах. В сонете 21 неподвижные звезды обозначают непоколебимость любви:

В любви и в слове — правда мой закон,

И я пишу, что милая прекрасна,

Как все, кто смертной матерью рожден,

А не как солнце или месяц ясный.

Я не хочу хвалить любовь мою, —

Я никому ее не продаю!6

Символика неподвижных звезд оставалась модной для английских поэтов эпохи романтизма. Перси Биши Шелли написал в 5-й песне своей поэмы «Королева Маб» в 1813 г.:

Сколько же Ньютонов, для чьего взора

Эти великие сферы, излучающие вечность,

Были лишь застывшими в небе блестящими каплями,

Освещающими полуночные часы родного города7.

В этом стихотворении королева Маб и дух Ианте «возносятся на волшебной колеснице», чтобы показать «будущий рай человечества». Стихотворение необычно обилием сопроводительных комментариев — целых 93 страницы вдобавок к 86 страницам самой поэмы. Это пример увлечения Шелли наукой, с помощью которой он подкрепляет свои поэтические образы и употребляемые им пророческие элементы, используя свежие открытия и новые научные идеи. Здесь мы видим заметное отличие от попытки По убедить читателя лишь с помощью предположений{8}.

Эйнштейн не был поэтом, да и писал в XX в., однако его не в меньшей степени очаровывали неподвижные звезды. За доказательствами мы можем обратиться не далее чем к его научной работе 1917 г. по теории космологии, в которой он в общих чертах обрисовывает суть известной сегодня новой теории гравитации — Общей теории относительности: «Космологические наблюдения к общей теории относительности»{9}. Сформулированные Эйнштейном так называемые уравнения поля всеобщей относительности объясняют, как материя и энергия создают гравитацию и как гравитация, в свою очередь, влияет на форму пространства и времени. Также в работе вводится космологическая постоянная, обозначенная греческой буквой «лямбда». Лямбда — противодействующая сила, которая сопротивляется притягивающей природе гравитации, — в формулировке Эйнштейна обеспечивала неподвижное положение в небе звезд и туманностей (в то время уже знали о галактиках). Эйнштейн утверждал, что можно выбрать значение лямбды для поддержания этого хрупкого баланса, который отвечал бы за неизменную Вселенную и ее постоянный размер. Введение этой константы стало весьма умным шагом с его стороны для защиты всех остальных наблюдений, которые подтверждали его ОТО. Отталкивающий эффект лямбды имел бы незначительное проявление при наблюдении в масштабах нашей Солнечной системы и показал себя только на огромнейших космических расстояниях. Такие масштабы в то время выходили за рамки эмпирической досягаемости.

В заключение своей работы Эйнштейн признает: «…последний [член лямбда] нам необходим для того, чтобы обеспечить возможность квазистатичного распределения материи, соответствующего фактическим малым скоростям звезд». Другими словами, у него не было объяснения, почему и как появилось понятие лямбды. Он обосновал свои измышления, заявив о необходимости соответствовать необычайно малым скоростям или видимому движению близлежащих звезд в отношении более далеких точек отсчета. Но добавленный им дополнительный член был не только способом скорректировать уравнение и представить теорию в лучшем виде. Мотивы Эйнштейна, которыми он руководствовался при изменении уравнения, свидетельствовали о продолжении культурной традиции и глубоко устоявшейся вере в статичную Вселенную{10}.

Эйнштейн был убежден, что нашел в статичной Вселенной единственно возможное решение своих уравнений поля. Но в 1917 г. нидерландский физик Виллем де Ситтер доказал существование другого решения. Оно описывало пустынную Вселенную, лишенную всякой материи. Де Ситтер предложил новую модель Вселенной, основываясь на космологической теории Эйнштейна, и свой вариант скромно и почтительно именовал «Решением Б» в ответ на «Решение А» Эйнштейна. Геометрия пространства, которая является ключевой характеристикой в теории относительности Эйнштейна, не меняется во времени в Решении А Эйнштейна или новом Решении Б. Однако де Ситтер взял на себя смелость предположить, что содержание материи во Вселенной незначительно в сравнении с силой космологической постоянной Эйнштейна. В его решении из-за отсутствия материи во Вселенной направление ее развития полностью зависит от выдумки Эйнштейна — понятия космологической постоянной. Решение Б де Ситтера подразумевает два ошеломляющих вывода: измерения времени зависят от местоположения наблюдателя во Вселенной и туманности движутся эксцентрично — они стремительно разбегаются друг от друга, приводимые в движение исключительно мощной отталкивающей силой со стороны превалирующей космологической постоянной, и таким образом аннулируют действие гравитации{11}.

Де Ситтер с интересом следил за успехами наблюдательной астрономии и знал об опубликованных в 1913 г. результатах наблюдений астронома Весто Мелвина Слайфера за удаляющимися туманностями. Эйнштейн не был в курсе эмпирических достижений в астрономии. В своей работе в 1917 г. де Ситтер отчитался о ряде исследованных туманностей, которые разбегались со скоростью несколько сотен километров в секунду. Эти наблюдения соответствовали прогнозу де Ситтера и, по его утверждениям, поддерживали таким образом Решение Б. Эти доводы не убедили Эйнштейна и других ученых. Они считали модель Вселенной де Ситтера абсурдной, так как она не содержала никакой материи! Даже несмотря на то, что Решение Б забраковали, работа де Ситтера приобрела статус фундаментальной, так как он открыл дорогу для новой, принципиально важной возможности — трактовать время в уравнениях Эйнштейна как переменную величину. Де Ситтер оформил и усовершенствовал концепцию постоянно развивающейся Вселенной. Тем не менее ему требовались решения, которые бы совпадали с реальной Вселенной — такой, которая явно содержит галактики, а не одну пустоту.

После того как де Ситтер проложил дорогу концепции изменяющейся во времени Вселенной, идея быстро проникла в умы, и другие ученые взялись за исследования в этом направлении. Одним из таких исследователей был советский ученый Александр Фридман, в 1922 г. начавший изучать решения уравнений поля, которые описывали Вселенную, содержавшую в себе материю и изменяющуюся с течением времени, то есть динамические модели космоса при наличии материи. Он отказался как от идей Эйнштейна, так и де Ситтера, и обнаружил ряд иных решений, включающих переменные, которые удовлетворяли уравнениям поля. В его модели Вселенная первоначально была крайне плотной, но с течением времени она расширялась и становилась все более разреженной. Эйнштейн ознакомился с работой Фридмана, но без долгих рассуждений отказался принимать ее всерьез, так как он был категорически не согласен с расчетами ученого. Отчасти по причине такого несогласия работа так и не получила широкого распространения среди читателей. Кроме того, Фридман умер всего три года спустя в возрасте 37 лет. В отсутствие сильных сторонников его идея осталась без внимания.

В действительности Эйнштейн был недоволен решениями и де Ситтера, и Фридмана, но причины недовольства слегка отличались. Решение де Ситтера он считал абсурдным, так как оно подразумевало пустую Вселенную, а решение Фридмана противоречило уверенности Эйнштейна в статичности Вселенной. В ответ Эйнштейн опубликовал несколько поспешно написанных (и ошибочных) статей, призванных выявить заблуждения обоих ученых. Но, когда были обнаружены ошибки в его собственных возражениях, он признал право на существование данных решений, хотя они его и не убедили. Таким образом, даже человек, которого многие считают эпохальным ученым, придерживался убеждений, не имеющих под собой рациональной базы, несмотря на то что в своей работе опирался на рациональное восприятие и логику. Вердикт Эйнштейна, согласно которому Вселенная должна была пребывать в статичном состоянии, оставался непоколебимым до тех пор, пока не появились неопровержимые эмпирические доказательства противного.