КЭД – странная теория света и вещества — страница 12 из 27

о посмотрите, как хорошо все получается: дополнительные обороты, сделанные часовой стрелкой во время движения фотона на этапах 3 и 5 (по пути к А), в точности равны дополнительным оборотам, сделанным за время движения фотона на этапах 5 и 7 (по пути в В). Это значит, что, когда стрелки отражения взаимно уничтожаются, давая результирующую стрелку, соответствующую нулевому отражению, стрелки пропускания света усиливают друг друга, давая результирующую длиной 0,96+0,04, или 1. То есть, когда вероятность отражения равна нулю, вероятность пропускания света равна 100 % (см. рис. 45). А когда стрелки отражения усиливают друг друга, давая амплитуду 0,04, стрелки пропускания света направлены противоположно, что дает амплитуду длиной 0,96–0,04, или 0,92. Следовательно, когда отражение должно быть равно 16 %, пропускание света должно быть равно 84 % (0,92 в квадрате). Видите, как умно придумала Природа свои правила – они гарантируют нам, что мы всегда получим все 100 % учитываемых фотонов![9]

В заключение, прежде чем уйти, я хочу сообщить вам, что имеется дополнение к правилу о том, когда надо умножать стрелки: стрелки надо умножать не только, если событие состоит из последовательных этапов, но и если событие состоит из некоторого числа параллельных – независимых и, возможно, одновременных – явлений. Например, предположим, у нас есть два источника, Х и Y, и два детектора, А и В (см. рис. 47), и мы хотим вычислить вероятность следующего события: после того как Х и Y теряют по одному фотону, А и В приобретают по одному фотону. В этом примере фотоны летят в пространстве, чтобы попасть в детекторы – здесь нет ни отражения, ни пропускания, так что мне представляется удобный случай перестать, наконец, игнорировать тот факт, что свет расходится по мере распространения. Теперь представляю вам законченное правило для монохроматического света, распространяющегося в пространстве от одной точки до другой, – здесь нет никаких приближений и упрощений. Это все, что надо знать о монохроматическом свете, распространяющемся в пространстве (не считая поляризации): направление стрелки зависит от воображаемой часовой стрелки, делающей определенное количество оборотов на каждый дюйм пройденного пути (в зависимости от цвета фотона); длина стрелки обратно пропорциональна расстоянию, пройденному светом, – другими словами, стрелка сжимается по мере распространения света[10].


Рис. 46. Для более точных вычислений следует рассмотреть и другие возможные способы отражения света. На этом рисунке сжатия до 0,98 происходят на этапах 2 и 10; сжатия до 0,2 – на этапах 4, 6 и 8. В результате получается стрелка длиной при-мерно 0,008, которая соответствует еще одному возможному варианту отражения и которую поэтому надо сложить с другими отвечающими отражению стрелками (0,2 для перед-ней и 0,192 для задней поверхности).


Рис. 47. Если один из способов, которым может произойти данное событие, зависит от некоторого количества независимых процессов, амплитуда этого способа вычисляется путем умножения стрелок для независимых процессов. В данном случае конечное событие таково: после того как источники Х и У каждый излучили по фотону, фотоумножители А и В издали по щелчку. Первый способ, каким могло произойти это со-бытие, состоит в том, что фотон из X мог попасть в А, а фотон из Y – в В (два независимых события). Чтобы вычислить вероятность этого «первого способа», надо умножить стрелки для каждого независимого события X – А и Y – B, получив таким образом амплитуду именно этого способа. (Продолжение анализа на рис. 48).


Предположим, стрелка X – А имеет длину 0,5 и указывает на 5 часов так же, как и стрелка Y – В (см. рис. 47). Перемножив стрелки, получаем результирующую стрелку длиной 0,25 и направленную на 10 часов.


Рис. 48. Событие, обсуждаемое в подписи к рис. 47, могло бы происходить другим способом – фотоны летят из X в В и из Y в А. В этом случае все событие также зависело бы от двух независимых процессов, так что амплитуда этого «второго способа» вычисляется также путем умножения стрелок для независимых событий. Стрелки для «первого» и «второго» способов в конце концов складываются, давая результирующую стрел-ку всего события. Вероятность события всегда представляется единственной результирующей стрелкой – независимо от того, сколько стрелок было нарисовано, сложено и умножено, что-бы ее получить.


Но постойте! Это событие могло произойти другим способом: фотон из X мог отправиться в В, а фотон из Y – в А. Каждый из этих подпроцессов имеет свою амплитуду: надо также нарисовать и эти стрелки и перемножить их, чтобы получить амплитуду такого именно способа осуществления события (см. рис. 48). Так как величина сжатия, связанного с расстоянием, очень мала по сравнению с величиной поворота, стрелки X – В и Y – А имеют, по существу, такую же длину 0,5, как и стрелки X – А и Y – В, но направлены они будут совершенно по-другому: часовая стрелка делает 36 000 оборотов на один дюйм пробега красного света, поэтому даже маленькое изменение расстояния вызывает значительное изменение показаний стрелки.

Амплитуды для каждого способа, которым могло бы произойти событие, складываются и дают результирующую стрелку. Так как длины стрелок, по существу, одинаковы, имеется возможность того, что стрелки окажутся противоположно направленными и взаимно сократятся. Относительные направления двух стрелок можно менять, изменяя расстояние между источниками или детекторами: просто сдвигая или раздвигая детекторы, можно усилить или совсем уничтожить вероятность события, точно так же, как в случае частичного отражения от двух поверхностей[11].

В этом примере стрелки умножались, а затем складывались, и в итоге получалась результирующая стрелка (амплитуда события), квадрат длины которой равен вероятности события. Надо подчеркнуть, что независимо от того, сколько стрелок мы рисуем, складываем или умножаем, наша цель – получить единственную результирующую стрелку всего события. Студенты-физики поначалу часто совершают ошибки, так как упускают из виду этот важный момент. Они так долго трудятся над анализом событий, в которых участвует единственный фотон, что начинают считать, будто стрелка как-то связана с самим фотоном. Но эти стрелки представляют собой амплитуды вероятности, дающие при возведении их в квадрат вероятность всего события целиком[12].

В следующей лекции я начну упрощать и объяснять свойства вещества: покажу, откуда берется сжатие до 0,2, почему кажется, что свет проходит сквозь стекло или воду медленнее, чем сквозь воздух, и т. д. Ведь до сих пор я жульничал. На самом деле фотоны не отскакивают от поверхности стекла; они взаимодействуют с электронами внутри стекла. Я покажу вам, что фотоны в действительности только переходят от одного электрона к другому, и отражение и пропускание являются результатом того, что электрон захватывает фотон, потом, так сказать, «чешет в затылке» и испускает новый фотон. Это упрощение всего, о чем мы до сих пор говорили, очень приятно.

Лекция 3. Электроны и их взаимодействия

Это третья из четырех лекций, посвященных весьма трудному предмету – квантовой электродинамике. И так как сегодня слушателей явно больше, чем было раньше, то, значит, многие из вас не слышали первых двух лекций. Им эта лекция покажется почти полностью непонятной. Те же, кто слышал первые две лекции, также сочтут эту лекцию непонятной, но они знают, что так и должно быть: я уже объяснял на первой лекции, что мы вынуждены описывать поведение Природы, как правило, непонятным образом.

В этих лекциях я хочу рассказать о наиболее изученном разделе физики – взаимодействии электронов со светом. Большая часть знакомых вам явлений основана на взаимодействии электронов со светом – например, вся химия и биология. Эта теория не охватывает только гравитационные и ядерные явления; все остальное в ней содержится.

На первой лекции мы обнаружили, что у нас нет наглядного механизма для описания даже такого простейшего явления, как частичное отражение света от стекла. Кроме того, мы не можем предсказать, отразится ли данный фотон, или пройдет сквозь стекло. Все, что мы можем сделать – посчитать вероятность конкретного события – отражения света в данном случае. (Она равна примерно 4 %, когда свет прямо падает на одиночную поверхность стекла; при наклонном падении вероятность отражения возрастает.)

Если мы имеем дело с вероятностями в обычных условиях, выполняются следующие «правила соединения»: 1) если событие может произойти взаимоисключающими способами, мы складываем вероятности всех различных способов; 2) если событие происходит поэтапно или в результате ряда независимых событий, мы перемножаем вероятности всех этапов (или событий).

В фантастическом и удивительном мире квантовой физики вероятности вычисляются как квадраты длин стрелок. Там, где в обычных условиях мы сложили бы вероятности, мы неожиданно для себя «складываем» стрелки; там, где умножили бы вероятности – «перемножаем» стрелки. Необычные ответы, получаемые при вычислении вероятностей таким способом, прекрасно соответствуют результатам эксперимента. Мне как раз очень нравится, что мы должны прибегать к таким необычным правилам и странным рассуждениям, чтобы понять Природу, и я всегда с удовольствием рассказываю об этом. За этим анализом Природы нет никакого скрытого механизма, «колесиков и шестеренок». Если вы хотите понять Ее, вы должны принять это.

Прежде чем перейти к основной части этой лекции, хочу показать вам еще один пример поведения света. Я расскажу об очень слабом свете одного цвета, который распространяется из источника